Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070204    DOI: 10.1088/1674-1056/20/7/070204
GENERAL Prev   Next  

Lie–Mei symmetry and conserved quantities of the Rosenberg problem

Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成)
College of Physics Science and Technology, China University of Petroleum (East China), Qingdao 266555, China
Abstract  The Rosenberg problem is a typical but not too complicated problem of nonholonomic mechanical systems. The Lie—Mei symmetry and the conserved quantities of the Rosenberg problem are studied. For the Rosenberg problem, the Lie and the Mei symmetries for the equation are obtained, the conserved quantities are deduced from them and then the definition and the criterion for the Lie—Mei symmetry of the Rosenberg problem are derived. Finally, the Hojman conserved quantity and the Mei conserved quantity are deduced from the Lie—Mei symmetry.
Keywords:  nonholonomic systems      Rosenberg problem      Lie—Mei symmetry      conserved quantity  
Received:  26 November 2010      Revised:  27 January 2011      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  11.30.-j (Symmetry and conservation laws)  
  45.20.Jj (Lagrangian and Hamiltonian mechanics)  

Cite this article: 

Liu Xiao-Wei(刘晓巍) and Li Yuan-Cheng(李元成) Lie–Mei symmetry and conserved quantities of the Rosenberg problem 2011 Chin. Phys. B 20 070204

[1] Mei F X 1985 Foundations of Mechanics of Nonholonomic Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[2] Mei F X, Liu D and Luo Y 1991 Advanced Analytical Mechanics (Beijing: Beijing Institute of Technology Press) p. 131 (in Chinese)
[3] Xue W X 1987 Acta Mech. Sin. 19 156
[4] Yuan S J and Mei F X 1987 Acta Mech. Sin. 19 165
[5] Luo S K 1996 Appl. Math. Mech. 17 683
[6] Luo S K 1998 Appl. Math. Mech. 19 43
[7] Noether A E 1918 Nachr. Akad. Wiss. Göttingen. Math. Phys. KIII 235
[8] Li Z P 1993 Classical and Quantal Dynamics of Constrained systems and Their Symmetrical Properties (Beijing: Beijing Polytechnic University Press) (in Chinese)
[9] Mei F X 1999 Applications of Lie Groups and Lie Algebras to Constrained Mechanical Systems (Beijing: Science Press) (in Chinese)
[10] Mei F X 2004 Symmetries and Conserved Quantities of Constrained Mechanical Systems (Beijing: Beijing Institute of Technology Press) (in Chinese)
[11] Luo S K and Zhang Y F 2008 Advances in the Study of Dynamics of Constrained Systems (Beijing: Science Press) (in Chinese)
[12] Hojman S A 1992 J. Phys. A 25 L291
[13] Mei F X 2000 J. Beijing Inst. Technol. 9 120
[14] Mei F X and Shang M 2000 Acta Phys. Sin. 49 1901 (in Chinese)
[15] Mei F X, Xu X J and Zhang Y F 2004 Acta Mech. Sin. 20 668
[16] Wang S Y and Mei F X 2001 Chin. Phys. 10 373
[17] Qiao Y F, Zhao S H and Li R J 2004 Chin. Phys. 13 292
[18] Lutzky M 1979 J. Phys. A: Math. Gen. 12 973
[19] Mei F X and Shui X P 2006 J. Beijing Institute of Technology 26 285 (in Chinese)
[20] Li Y C, Xia L L, Wang X M and Liu X W 2010 Acta Phys. Sin. 59 3639 (in Chinese)
[21] Rosenberg R M 1977 Analytical Dynamics of Discrete Systems (New York: Plenum Press)
[22] Novoselov V S 1966 Variational Priciples in Mechanics (Leningrad: LGV Press) (in Russian)
[23] Ge W H, Zhang Y and Xue Y 2010 Acta Phys. Sin. 59 4434 (in Chinese)
[1] Exploring fundamental laws of classical mechanics via predicting the orbits of planets based on neural networks
Jian Zhang(张健), Yiming Liu(刘一鸣), and Zhanchun Tu(涂展春). Chin. Phys. B, 2022, 31(9): 094502.
[2] Quasi-canonicalization for linear homogeneous nonholonomic systems
Yong Wang(王勇), Jin-Chao Cui(崔金超), Ju Chen(陈菊), Yong-Xin Guo(郭永新). Chin. Phys. B, 2020, 29(6): 064501.
[3] Noether symmetry and conserved quantity for dynamical system with non-standard Lagrangians on time scales
Jing Song(宋静), Yi Zhang(张毅). Chin. Phys. B, 2017, 26(8): 084501.
[4] Non-Noether symmetries of Hamiltonian systems withconformable fractional derivatives
Lin-Li Wang (王琳莉) and Jing-Li Fu(傅景礼). Chin. Phys. B, 2016, 25(1): 014501.
[5] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[6] Noether symmetry and conserved quantity for a Hamilton system with time delay
Jin Shi-Xin (金世欣), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(5): 054501.
[7] Noether's theorems of a fractional Birkhoffian system within Riemann–Liouville derivatives
Zhou Yan (周燕), Zhang Yi (张毅). Chin. Phys. B, 2014, 23(12): 124502.
[8] Lie symmetry theorem of fractional nonholonomic systems
Sun Yi (孙毅), Chen Ben-Yong (陈本永), Fu Jing-Li (傅景礼). Chin. Phys. B, 2014, 23(11): 110201.
[9] Conformal invariance, Noether symmetry, Lie symmetry and conserved quantities of Hamilton systems
Chen Rong (陈蓉), Xu Xue-Jun (许学军). Chin. Phys. B, 2012, 21(9): 094501.
[10] A type of conserved quantity of Mei symmetry of Nielsen equations for a holonomic system
Cui Jin-Chao (崔金超), Han Yue-Lin (韩月林), Jia Li-Qun (贾利群 ). Chin. Phys. B, 2012, 21(8): 080201.
[11] Noether conserved quantities and Lie point symmetries for difference nonholonomic Hamiltonian systems in irregular lattices
Xia Li-Li(夏丽莉) and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(7): 070202.
[12] Form invariance and approximate conserved quantity of Appell equations for a weakly nonholonomic system
Jia Li-Qun(贾利群), Zhang Mei-Ling(张美玲), Wang Xiao-Xiao(王肖肖), and Han Yue-Lin(韩月林) . Chin. Phys. B, 2012, 21(7): 070204.
[13] Symmetry of Lagrangians of holonomic nonconservative system in event space
Zhang Bin(张斌), Fang Jian-Hui(方建会), and Zhang Wei-Wei(张伟伟) . Chin. Phys. B, 2012, 21(7): 070208.
[14] Symmetry of Lagrangians of a holonomic variable mass system
Wu Hui-Bin(吴惠彬) and Mei Feng-Xiang(梅凤翔) . Chin. Phys. B, 2012, 21(6): 064501.
[15] Mei symmetry and Mei conserved quantity of the Appell equation in a dynamical system of relative motion with non-Chetaev nonholonomic constraints
Wang Xiao-Xiao(王肖肖), Sun Xian-Ting(孙现亭), Zhang Mei-Ling(张美玲), Han Yue-Lin(韩月林), and Jia Li-Qun(贾利群) . Chin. Phys. B, 2012, 21(5): 050201.
No Suggested Reading articles found!