Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070202    DOI: 10.1088/1674-1056/20/7/070202
GENERAL Prev   Next  

Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities

Huang Ding-Jiang(黄定江)a)b)c)†, Zhou Shui-Geng(周水庚)b)c), and Yang Qin-Min(杨勤民) a)
a Department of Mathematics, East China University of Science and Technology, Shanghai 200237, China; b School of Computer Science, Fudan University, Shanghai 200433, China; c Shanghai Key Laboratory of Intelligent Information Processing, Fudan University, Shanghai 200433, China
Abstract  Conservation laws for a class of variable coefficient nonlinear wave equations with power nonlinearities are investigated. The usual equivalence group and the generalized extended one including transformations which are nonlocal with respect to arbitrary elements are introduced. Then, using the most direct method, we carry out a classification of local conservation laws with characteristics of zero order for the equation under consideration up to equivalence relations generated by the generalized extended equivalence group. The equivalence with respect to this group and the correct choice of gauge coefficients of the equations play the major roles for simple and clear formulation of the final results.
Keywords:  nonlinear wave equations      conservation laws      equivalence group      symmetries  
Received:  03 August 2010      Revised:  04 February 2011      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Jr (Partial differential equations)  

Cite this article: 

Huang Ding-Jiang(黄定江), Zhou Shui-Geng(周水庚), and Yang Qin-Min(杨勤民) Conservation laws for variable coefficient nonlinear wave equations with power nonlinearities 2011 Chin. Phys. B 20 070202

[1] Bluman G W and Kumei S 1989 Symmetries and Differential Equations (New York: Springer)
[2] Bluman G W, Cheviakov A F and Anco S C 2010 Applications of Symmetry Methods to Partial Differential Equations (New York: Springer)
[3] Olver P J 1986 Application of Lie Groups to Differential Equations (New York: Springer-Verlag)
[4] Ibragimov N H 1985 Transformation Groups Applied to Mathematical Physics (Dordrecht: D. Reidel Publishing Co.)
[5] Ibragimov N H (Editor) 1994 Lie Group Analysis of Differential Equations —- Symmetries, Exact Solutions and Conservation Laws Vol. 1 (Boca Raton, FL: CRC Press)
[6] Ovsiannikov L V 1982 Group Analysis of Differential Equations (New York: Academic Press)
[7] Newell A C 1983 J. Appl. Mech. 50 1127
[8] Wolf T 2002 Eur. J. Appl. Math. 13 129
[9] Zhang H P, Li B, Chen Y and Huang F 2010 Chin. Phys. B 19 020201
[10] Wang Y F, Lou S Y and Qian X M 2010 Chin. Phys. B 19 050202
[11] Huang D J, Yang Q M and Zhou S G 2010 Lie Symmetry Classification and Reduction Operators of Variable Coefficient Nonlinear Wave Equations with Power Nonlinearities Submitted.
[12] Ames W F 1972 Nonlinear Partial Differential Equations in Engineering (New York: Academic)
[13] Ames W F, Adams E and Lohner R J 1981 Int. J. Non-Linear Mech. 16 439
[14] Anco S C and Bluman G 2002 Eur. J. Appl. Math. 13 546
[15] Anco S C and Bluman G 1997 Phys. Rev. Lett. 78 2869
[16] Anco S C and Bluman G 2002 Eur. J. Appl. Math. 13 567
[17] Bluman G and Cheviakov A F 2007 J. Math. Anal. Appl. 333 93
[18] Cheviakov A F 2010 J. Eng. Math. 66 153
[19] Laplace P S 1798 Trait'e de M'ecanique C'eleste, Duprat, Paris (English Translation, Celestrial Mechanics, New York, 1966).
[20] Noether E 1918 Nacr. Konig. Gesell. Wissen., Gottingen, Math.-Phys. Kl. Heft 2 235 (English translation published in Transport Theory and Statistical Physiscs 1 186 (1971)).
[21] Steudel H 1962 Z. Naturforsch. A 17 129
[22] Kara A H and Mahomed F M 2000 Int. J. Theor. Phys. 39 23
[23] Kara A H and Mahomed F M 2006 Nonlinear Dynam. 45 367
[24] Atherton R W and Homsy G M 1975 Studies Appl. Math. 54 31
[25] Bluman G, Temuerchaolu and Anco S C 2006 J. Math. Anal. Appl. 322 233
[26] Ibragimov N H 2007 J. Math. Anal. Appl. 333 311
[27] Hereman W, Adams P J, Eklund H L, Hickman M S and Herbst B M 2009 Advances in Nonlinear Waves and Symbolic Computation (New York: Nova Science Publishers) p. 19
[28] Jia M, Gao Y and Lou S Y 2010 Phys. Lett. A 374 1704
[29] Dong W S, Fang J H and Huang B X 2010 Acta Phys. Sin. 59 724 (in Chinese)
[30] Ding N, Fang J H, Liao Y P and Wang P 2006 Chin. Phys. 15 2792
[31] Zhang Y 2005 Acta Phys. Sin. 54 2980 (in Chinese)
[32] Zhao L, Fu J L and Chen B Y 2010 Chin. Phys. B 19 010301
[33] Naz R, Mahomed F M and Mason D P 2008 Appl. Math. Comput. 205 212
[34] Ivanova N M, Popovych R O and Sophocleous C 2007 arXiv: 0710.3053
[35] Popovych R O and Ivanova N M 2005 J. Math. Phys. 46 043502
[36] Ivanova N M 2004 Proceedings of Institute of Mathematics of NAS of Ukraine 50 149
[37] Ivanova N M, Popovych R O and Sophocleous C 2004 Proceedings of 10th International Conference in Modern Group Analysis, Larnaca, Cyprus, October 24—31, 2004 p. 107
[38] Anco S C and Ivanova N M 2007 J. Math. Anal. Appl. 332 863
[39] Huang D J and Ivanova N M 2007 J. Math. Phys 48 073507
[40] Ivanova N M and Popovych R O 2007 Int. J. Theor. Phys. 46 2658
[41] Ivanova N M 2007 Nonlinear Dynamics 49 71
[42] Ivanova N M and Sophocleous C 2008 J. Phys. A 41 235201
[43] Ivanova N M, Popovych R O, Sophocleous C and Vaneeva O O 2009 Physica A 388 343
[44] Popovych R O, Kunzinger M and Ivanova N M 2008 Acta Appl. Math. 100 113
[45] Vaneeva O O, Johnpillai A G, Popovych R O and Sophocleous C 2007 J. Math. Anal. Appl. 330 1363
[46] Bluman G and Doran-Wu P 1995 Acta Appl. Math. 41 21
[1] Space symmetry of effective physical constants for biaxial crystals
Fuan Liu(刘孚安), Zeliang Gao(高泽亮), XinYin(尹鑫), and Xutang Tao(陶绪堂). Chin. Phys. B, 2021, 30(2): 026104.
[2] Theory of unconventional superconductivity in nickelate-based materials
Ming Zhang(张铭), Yu Zhang(张渝), Huaiming Guo(郭怀明), and Fan Yang(杨帆). Chin. Phys. B, 2021, 30(10): 108204.
[3] Two integrable generalizations of WKI and FL equations: Positive and negative flows, and conservation laws
Xian-Guo Geng(耿献国), Fei-Ying Guo(郭飞英), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2020, 29(5): 050201.
[4] Density wave and topological superconductivity in the magic-angle-twisted bilayer-graphene
Ming Zhang(张铭), Yu Zhang(张渝), Chen Lu(卢晨), Wei-Qiang Chen(陈伟强), and Fan Yang(杨帆). Chin. Phys. B, 2020, 29(12): 127102.
[5] An extension of integrable equations related to AKNS and WKI spectral problems and their reductions
Xian-Guo Geng(耿献国), Yun-Yun Zhai(翟云云). Chin. Phys. B, 2018, 27(4): 040201.
[6] A local energy-preserving scheme for Zakharov system
Qi Hong(洪旗), Jia-ling Wang(汪佳玲), Yu-Shun Wang(王雨顺). Chin. Phys. B, 2018, 27(2): 020202.
[7] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[8] Multi-symplectic variational integrators for nonlinear Schrödinger equations with variable coefficients
Cui-Cui Liao(廖翠萃), Jin-Chao Cui(崔金超), Jiu-Zhen Liang(梁久祯), Xiao-Hua Ding(丁效华). Chin. Phys. B, 2016, 25(1): 010205.
[9] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping (刘萍), Zeng Bao-Qing (曾葆青), Yang Jian-Rong (杨建荣), Ren Bo (任博). Chin. Phys. B, 2015, 24(1): 010202.
[10] Exact solution of Dirac equation for Scarf potential with new tensor coupling potential for spin and pseudospin symmetries using Romanovski polynomials
A. Suparmi, C. Cari, U. A. Deta. Chin. Phys. B, 2014, 23(9): 090304.
[11] A novel hierarchy of differential–integral equations and their generalized bi-Hamiltonian structures
Zhai Yun-Yun (翟云云), Geng Xian-Guo (耿献国), He Guo-Liang (何国亮). Chin. Phys. B, 2014, 23(6): 060201.
[12] Bound state solutions of the Dirac equation with the Deng–Fan potential including a Coulomb tensor interaction
S. Ortakaya, H. Hassanabadi, B. H. Yazarloo. Chin. Phys. B, 2014, 23(3): 030306.
[13] Relativistic symmetries of Deng–Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions
Akpan N. Ikot, S. Zarrinkamar, B. H. Yazarloo, H. Hassanabadi. Chin. Phys. B, 2014, 23(10): 100306.
[14] Symmetries and conservation laws of one Blaszak–Marciniak four-field lattice equation
Wang Xin (王鑫), Chen Yong (陈勇), Dong Zhong-Zhou (董仲周). Chin. Phys. B, 2014, 23(1): 010201.
[15] Multi-symplectic scheme for the coupled Schrödinger–Boussinesq equations
Huang Lang-Yang (黄浪扬), Jiao Yan-Dong (焦艳东), Liang De-Min (梁德民). Chin. Phys. B, 2013, 22(7): 070201.
No Suggested Reading articles found!