Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(7): 070201    DOI: 10.1088/1674-1056/20/7/070201
GENERAL   Next  

Binary nonlinearization of the super classical-Boussinesq hierarchy

Tao Si-Xing(陶司兴)a), Wang Hui(王惠)b), and Shi Hui(史会)c)†
a Department of Mathematics, Shangqiu Normal University, Shangqiu 476000, China; b Department of Mathematics, Shanghai University, Shanghai 200444, China; c Department of Physics and Information Engineering, Shangqiu Normal University, Shangqiu 476000, China
Abstract  The symmetry constraint and binary nonlinearization of Lax pairs for the super classical-Boussinesq hierarchy is obtained. Under the obtained symmetry constraint, the n-th flow of the super classical-Boussinesq hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold with the corresponding dynamical variables x and tn. The integrals of motion required for Liouville integrability are explicitly given.
Keywords:  symmetry constraints      binary nonlinearization      super classical-Boussinesq hierarchy      super finite-dimensional integrable Hamiltonian systems  
Received:  12 December 2010      Revised:  23 February 2011      Accepted manuscript online: 
PACS:  02.20.Sv (Lie algebras of Lie groups)  
  02.30.Ik (Integrable systems)  
  02.30.Jr (Partial differential equations)  

Cite this article: 

Tao Si-Xing(陶司兴), Wang Hui(王惠), and Shi Hui(史会) Binary nonlinearization of the super classical-Boussinesq hierarchy 2011 Chin. Phys. B 20 070201

[1] Xia T C and You F C 2007 Chin. Phys. 16 605
[2] Dong H H 2007 Chin. Phys. 16 1177
[3] Yu F J and Zhang H Q 2008 Chin. Phys. B 17 1574
[4] Yang H W and Dong H H 2009 Chin. Phys. B 18 845
[5] Li Z 2009 Chin. Phys. B 18 850
[6] Cheng Y and Li Y S 1991 Phys. Lett. A 157 22
[7] Cheng Y 1992 J. Math. Phys. 33 3774
[8] Ma W X and Strampp W 1994 Phys. Lett. A bf 185 277
[9] Ma W X 1995 J. Phys. Soc. Japan 64 1085
[10] Zeng Y B and Li Y S 1989 J. Math. Phys. 30 1679
[11] Cao C W and Geng X G 1991 J. Math. Phys. 32 2323
[12] Ma W X 1995 Phys. A 219 467
[13] Ma W X and Zhou R G 2002 J. Nonlinear Math. Phys. 9 106
[14] Ma W X 1997 Chin. Ann. Math. 18B 79
[15] Hu X B 1997 J. Phys. A: Math. Gen. 30 619
[16] Ma W X, He J S and Qin Z Y 2008 J. Math. Phys. 49 033511
[17] Wang X Z and Dong H H 2010 Chin. Phys. B 19 010202
[18] Tao S X and Xia T C 2010 Chin. Phys. B 19 070202
[19] Liu Q P and Manas M 2000 Phys. Lett. B 485 293
[20] Li Y S and Zhang L N 1986 Nuovo Cimento A 93 175
[21] Li Y S and Zhang L N 1990 J. Math. Phys. 31 470
[22] He J S, Yu J, Cheng Y and Zhou R G 2008 Mod. Phys. Lett. B 22 275
[23] Yu J, Han J W and He J S 2009 J. Phys. A: Math. Theo. 42 465201
[24] Yu J, He J S, Ma W X and Cheng Y 2010 Chin. Ann. Math. 31B 361
[25] Ma W X, Fuchssteiner B and Oevel W 1996 Phys. A 233 331
[26] Ma W X and Zhou Z X 2002 J. Math. Phys. 42 4345
[1] Consistent Riccati expansion solvability, symmetries, and analytic solutions of a forced variable-coefficient extended Korteveg-de Vries equation in fluid dynamics of internal solitary waves
Ping Liu(刘萍), Bing Huang(黄兵), Bo Ren(任博), and Jian-Rong Yang(杨建荣). Chin. Phys. B, 2021, 30(8): 080203.
[2] Bäcklund transformations, consistent Riccati expansion solvability, and soliton-cnoidal interaction wave solutions of Kadomtsev-Petviashvili equation
Ping Liu(刘萍), Jie Cheng(程杰), Bo Ren(任博), Jian-Rong Yang(杨建荣). Chin. Phys. B, 2020, 29(2): 020201.
[3] Discrete symmetrical perturbation and variational algorithm of disturbed Lagrangian systems
Li-Li Xia(夏丽莉), Xin-Sheng Ge(戈新生), Li-Qun Chen(陈立群). Chin. Phys. B, 2019, 28(3): 030201.
[4] Constructing (2+1)-dimensional N=1 supersymmetric integrable systems from the Hirota formalism in the superspace
Jian-Yong Wang(王建勇), Xiao-Yan Tang(唐晓艳), Zu-Feng Liang(梁祖峰). Chin. Phys. B, 2018, 27(4): 040203.
[5] New variable separation solutions for the generalized nonlinear diffusion equations
Fei-Yu Ji(吉飞宇), Shun-Li Zhang(张顺利). Chin. Phys. B, 2016, 25(3): 030202.
[6] A new six-component super soliton hierarchy and its self-consistent sources and conservation laws
Han-yu Wei(魏含玉) and Tie-cheng Xia(夏铁成). Chin. Phys. B, 2016, 25(1): 010201.
[7] Hamiltonian structure, Darboux transformation for a soliton hierarchy associated with Lie algebra so(4, C)
Wang Xin-Zeng (王新赠), Dong Huan-He (董焕河). Chin. Phys. B, 2015, 24(8): 080201.
[8] Generalized symmetries of an N=1 supersymmetric Boiti–Leon–Manna–Pempinelli system
Wang Jian-Yong (王建勇), Tang Xiao-Yan (唐晓艳), Liang Zu-Feng (梁祖峰), Lou Sen-Yue (楼森岳). Chin. Phys. B, 2015, 24(5): 050202.
[9] Conservation laws of the generalized short pulse equation
Zhang Zhi-Yong (张智勇), Chen Yu-Fu (陈玉福). Chin. Phys. B, 2015, 24(2): 020201.
[10] Exact solutions and residual symmetries of the Ablowitz-Kaup-Newell-Segur system
Liu Ping (刘萍), Zeng Bao-Qing (曾葆青), Yang Jian-Rong (杨建荣), Ren Bo (任博). Chin. Phys. B, 2015, 24(1): 010202.
[11] Third-order nonlinear differential operators preserving invariant subspaces of maximal dimension
Qu Gai-Zhu (屈改珠), Zhang Shun-Li (张顺利), Li Yao-Long (李尧龙). Chin. Phys. B, 2014, 23(11): 110202.
[12] Symmetries and variational calculationof discrete Hamiltonian systems
Xia Li-Li (夏丽莉), Chen Li-Qun (陈立群), Fu Jing-Li (傅景礼), Wu Jing-He (吴旌贺). Chin. Phys. B, 2014, 23(7): 070201.
[13] Lie group analysis, numerical and non-traveling wave solutions for the (2+1)-dimensional diffusion–advection equation with variable coefficients
Vikas Kumar, R. K. Gupta, Ram Jiwari. Chin. Phys. B, 2014, 23(3): 030201.
[14] New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology
M. M. Khader, Sunil Kumar, S. Abbasbandy. Chin. Phys. B, 2013, 22(11): 110201.
[15] Approximate derivative-dependent functional variable separation for quasi-linear diffusion equations with a weak source
Ji Fei-Yu (吉飞宇), Yang Chun-Xiao (杨春晓). Chin. Phys. B, 2013, 22(10): 100202.
No Suggested Reading articles found!