Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(4): 047302    DOI: 10.1088/1674-1056/20/4/047302
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation

Lin Xin(林鑫), Wang Hai-Long(王海龙), Pan Hui(潘晖), and Xu Huai-Zhe(许怀哲)
Department of Physics, Beihang University, Beijing 100191, China
Abstract  The energy band structure of single-layer graphene under one-dimensional electric and magnetic field modulation is theoretically investigated. The criterion for bandgap opening at the Dirac point is analytically derived with a two-fold degeneracy second-order perturbation method. It is shown that a direct or an indirect bandgap semiconductor could be realized in a single-layer graphene under some specific configurations of the electric and magnetic field arrangement. Due to the bandgap generated in the single-layer graphene, the Klein tunneling observed in pristine graphene is completely suppressed.
Keywords:  gap opening at Dirac point      single-layer graphene      electric and magnetic superlattice      second-order perturbation  
Received:  09 December 2010      Revised:  08 January 2011      Accepted manuscript online: 
PACS:  73.43.Cd (Theory and modeling)  
  73.61.Wp (Fullerenes and related materials)  
  73.50.Bk (General theory, scattering mechanisms)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 60776067 and 10974011).

Cite this article: 

Lin Xin(林鑫), Wang Hai-Long(王海龙), Pan Hui(潘晖), and Xu Huai-Zhe(许怀哲) Gap opening and tuning in single-layer graphene with combined electric and magnetic field modulation 2011 Chin. Phys. B 20 047302

[1] Novoselov K S, Geim A K, Morozov S V, Jiang D, Zhang Y, Dubonos S V, Grigorieva I V and Firsov A A 2004 Science 306 666
[2] Bolotin K, Sikes K, Jiang Z, Klima M, Fudenberg G, Hone J, Kim P and Stormer H L 2008 Solid State Commun. 146 351
[3] Neugebauer P, Orlita M, Faugeras C, Barra A L and Potemski M 2009 Phys. Rev. Lett. 103 136403
[4] Neto H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 Rev. Mod. Phys. 81 109
[5] Beenakker W J 2008 Rev. Mod. Phys. 80 1337
[6] Novoselov K S, Geim A K, Morozov S V, Jiang D, Katsnelson M I, Grigorieva I V, Dubonos S V and Firsov A A 2005 Nature 438 197
[7] Zhang Y, Tan J W, Stormer H L and Kim P 2005 Nature 438 201
[8] Zhou S Y, Gweon G H, Fedorov A V, First P N, Deheer W A, Lee D H, Guinea F, Castro Neto A H and Lanzara1 A 2007 Nat. Mater. 6 770
[9] Gusynin V P and Sharapov S G 2005 Phys. Rev. Lett. 95 146801
[10] Katsnelson M I, Novoselov K S and Geim A K 2006 Nat. Phys. 2 620
[11] Novoselov K S, Jiang D, Booth T, Khotkevich V V, Morozov S M and Geim A K 2005 Proc. Natl. Acad. Sci. USA 102 10451
[12] Guinea F, Katsnelson M I and Geim A K 2010 Nat. Phys. 6 30
[13] Balog R, Jorgensen B, Nilsson1 L, Andersen M, Rienks E, Bianchi M, Fanetti M, Laegsgaard E, Baraldi A, Lizzit S, Sljivancanin Z, Besenbacher F, Hammer B, Pedersen T G, Hofmann P and Hornekaer L 2010 Nat. Mater. 9 315
[14] Meyer J C, Girit C O, Crommie M F and Zettl A 2008 Appl. Phys. Lett. 92 123110
[15] Yang J, Dong Q L, Jiang Z T and Zhang J 2010 Chin. Phys. B 19 127104
[16] Han M Y, Ozyilmaz B, Zhang Y and Kim P 2007 Phys. Rev. Lett. 98 206805
[17] Zhang L J and Xia T S 2010 Chin. Phys. B 19 117105
[18] Son Y W, Cohen M L and Louie S G 2006 Phys. Rev. Lett. 97 216803
[19] Pedersen T G, Flindt C, Pedersen J, Mortensen N A, Jauho A P and Pedersen K 2008 Phys. Rev. Lett. 100 136804
[20] Rotenberg E, Bostwick A, Ohta T, McChesney J L, Seyller T and Horn K 2008 Nat. Mater. 7 258
[21] Zhou S Y, Siegel D A, Fedorov A V, Gabaly F E, Schmid A K, Castro Neto A H, Lee D H and Lanzara1 A 2008 Nat. Mater. 7 259
[22] Gerhardts R R, Weiss D and Klitzing K V 1989 Phys. Rev. Lett. 62 1173
[23] Peeters F M and Matulis A 1993 Phys. Rev. B 48 20
[24] Matulis A and Peeters F M 1994 Phys. Rev. Lett. 72 1518
[25] Messica A, Soibel A, Meirav U, Stern A, Shtrikman H, Umansky V and Mahalu D 1997 Phys. Rev. Lett. 78 705
[26] Kato M, Endo A, Katsumoto S and Iye Y 1998 Phys. Rev. B 58 4876
[27] Zhai F and Chang K 2008 Phys. Rev. B 77 113409
[28] Masir M R, Vasiopoulos P and Peeters F M 2009 Phys. Rev. B 79 035409
[29] Huard B, Sulpizio J A, Stander N, Todd K, Yang B and Goldhaber-Gordon D 2007 Phys. Rev. Lett. 98 236803
[30] Williams J R, Carlo L Di and Marcus C M 2007 Science 317 638
[31] Haugen H, Huertas-Hernando D and Brataas A 2008 Phys. Rev. B 77 115406
[32] Lin X, Pan H and Xu H Z 2010 Commun. Theor. Phys. 54 1134
[33] Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Nat. Phys. 4 213
[34] Park C H, Yang L, Son Y W, Cohen M L and Louie S G 2008 Phys. Rev. Lett. 101 126804
[35] Park C H, Son Y W, Yang L, Cohen M L and Louie S G 2008 Nano Lett. 8 2920
[36] Brey L and Fertig H A 2009 Phys. Rev. Lett. 103 046809
[37] Barbier M, Vasiopoulos P and Peeters F M 2010 Phli. Trans. R. Soc. A 368 5499
[38] Park C H, Son Y W, Yang L, Cohen M L and Louie S G 2009 Phys. Rev. Lett. 103 046808
[39] Barbier M, Vasiopoulos P and Peeters F M 2009 Phys. Rev. B 80 205415
[40] Barbier M, Peeters F M, Vasiopoulos P and Pereira J M 2008 Phys. Rev. B 77 115446
[41] Wang L G and Zhu S Y 2010 Phys. Rev. B 81 205444
[42] Park C H, Tan L Z and Louie S G 2011 Physica E 43 651
[43] Masir M R, Vasiopoulos P and Peeters F M 2009 New J. Phys. 11 095009
[44] Masir M R, Vasiopoulos P, Matulis A and Peeters F M 2008 Phys. Rev. B 77 235443
[45] DeMartino A, Dellánna L and Egger R 2007 Phys. Rev. Lett. 98 066802
[46] DeMartino A, Dellánna L and Egger R 2009 Phys. Rev. B 79 045420
[47] Xu L, An J and Gong C D 2010 Phys. Rev. B 81 125424
[48] Tan L Z, Park C H and Louie S G 2010 Phys. Rev. B 81 195426
[49] Snyman I 2009 Phys. Rev. B 80 054303
[50] Barbier M, Vasiopoulos P and Peeters F M 2010 J. Phys.: Condens. Matter 22 465302
[51] Meyer J C, Girit C O, Crommie M F and Zettl A 2008 Appl. Phys. Lett. 92 123110 endfootnotesize
[1] Prediction of quantum anomalous Hall effect in CrI3/ScCl2 bilayer heterostructure
Yuan Gao(高源), Huiping Li(李慧平), and Wenguang Zhu(朱文光). Chin. Phys. B, 2022, 31(10): 107304.
[2] Longitudinal conductivity in ABC-stacked trilayer graphene under irradiating of linearly polarized light
Guo-Bao Zhu(朱国宝), Hui-Min Yang(杨慧敏), and Jie Yang(杨杰). Chin. Phys. B, 2022, 31(8): 088102.
[3] Atomistic simulations of the lubricative mechanism of a nano-alkane lubricating film between two layers of Cu-Zn alloy
Jing Li(李京), Peng Zhu(朱鹏), Yuan-Yuan Sheng(盛圆圆), Lin Liu(刘麟), and Yong Luo(罗勇). Chin. Phys. B, 2021, 30(8): 080205.
[4] Atomistic simulations on adhesive contact of single crystal Cu and wear behavior of Cu-Zn alloy
You-Jun Ye(叶有俊), Le Qin (秦乐), Jing Li (李京), Lin Liu(刘麟), and Ling-Kang Wu(吴凌康). Chin. Phys. B, 2021, 30(2): 026801.
[5] Electron dynamics of active mode-locking terahertz quantum cascade laser
Qiushi Hou(侯秋实), Chang Wang(王长), and Juncheng Cao(曹俊诚). Chin. Phys. B, 2020, 29(12): 127302.
[6] Quantum anomalous Hall effect in twisted bilayer graphene quasicrystal
Zedong Li(李泽东) and Z F Wang(王征飞)†. Chin. Phys. B, 2020, 29(10): 107101.
[7] Seeing Dirac electrons and heavy fermions in new boron nitride monolayers
Yu-Jiao Kang(康玉娇), Yuan-Ping Chen(陈元平), Jia-Ren Yuan(袁加仁), Xiao-Hong Yan(颜晓红), Yue-E Xie(谢月娥). Chin. Phys. B, 2020, 29(5): 057303.
[8] Surface potential-based analytical model for InGaZnO thin-film transistors with independent dual-gates
Yi-Ni He(何伊妮), Lian-Wen Deng(邓联文), Ting Qin(覃婷), Cong-Wei Liao(廖聪维), Heng Luo(罗衡), Sheng-Xiang Huang(黄生祥). Chin. Phys. B, 2020, 29(4): 047102.
[9] Quantum spin Hall insulators in chemically functionalized As (110) and Sb (110) films
Xiahong Wang(王夏烘), Ping Li(李平), Zhao Ran(冉召), Weidong Luo(罗卫东). Chin. Phys. B, 2018, 27(8): 087305.
[10] A phenomenological memristor model for synaptic memory and learning behaviors
Nan Shao(邵楠), Sheng-Bing Zhang(张盛兵), Shu-Yuan Shao(邵舒渊). Chin. Phys. B, 2017, 26(11): 118501.
[11] Topological hierarchy matters–topological matters with superlattices of defects
Jing He(何敬), Su-Peng Kou(寇谡鹏). Chin. Phys. B, 2016, 25(11): 117310.
[12] Study on influences of TiN capping layer on time-dependent dielectric breakdown characteristic of ultra-thin EOT high-k metal gate NMOSFET with kMC TDDB simulations
Hao Xu(徐昊), Hong Yang(杨红), Wei-Chun Luo(罗维春), Ye-Feng Xu(徐烨峰), Yan-Rong Wang(王艳蓉), Bo Tang(唐波), Wen-Wu Wang(王文武), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Jiang Yan(闫江), Hui-Long Zhu(朱慧珑), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087305.
[13] Temperature- and voltage-dependent trap generation model in high-k metal gate MOS device with percolation simulation
Hao Xu(徐昊), Hong Yang(杨红), Yan-Rong Wang(王艳蓉), Wen-Wu Wang(王文武), Wei-Chun Luo(罗维春), Lu-Wei Qi(祁路伟), Jun-Feng Li(李俊峰), Chao Zhao(赵超), Da-Peng Chen(陈大鹏), Tian-Chun Ye(叶甜春). Chin. Phys. B, 2016, 25(8): 087306.
[14] Control of Hall angle of Skyrmion driven by electric current
Gao-Bin Liu(刘高斌), Da Li(李达), de Chatel P F, Jian Wang(王健), Wei Liu(刘伟), Zhi-Dong Zhang(张志东). Chin. Phys. B, 2016, 25(6): 067203.
[15] An analytic model for gate-all-around silicon nanowire tunneling field effect transistors
Liu Ying (刘颖), He Jin (何进), Chan Mansun (陈文新), Du Cai-Xia (杜彩霞), Ye Yun (叶韵), Zhao Wei (赵巍), Wu Wen (吴文), Deng Wan-Ling (邓婉玲), Wang Wen-Ping (王文平). Chin. Phys. B, 2014, 23(9): 097102.
No Suggested Reading articles found!