Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(12): 127502    DOI: 10.1088/1674-1056/20/12/127502
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Relation between oxidation microstructure and the maximum energy product loss of a Sm2Co17 magnet oxidized at 500 ℃

Liu Li-Li(刘丽丽) and Jiang Cheng-Bao(蒋成保)
Key Laboratory of Aerospace Materials and Performance (Ministry of Education), School of Materials Science and Engineering, Beihang University, Beijing 100191, China
Abstract  The oxidation microstructure and maximum energy product (BH)max loss of a Sm(Co0.76, Fe0.1, Cu0.1, Zr0.04)7 magnet oxidized at 500 ℃ were systematically investigated. Three different oxidation regions were formed in the oxidized magnet: a continuous external oxide scale, an internal reaction layer, and a diffusion zone. Both room-temperature and high-temperature (BH)max losses exhibited the same parabolic increase with oxidation time. An oxygen diffusion model was proposed to simulate the dependence of (BH)max loss on oxidation time. It is found that the external oxide scale has little effect on the (BH)max loss, and both the internal reaction layer and diffusion zone result in the (BH)max loss. Moreover, the diffusion zone leads to more (BH)max loss than the internal reaction layer. The values of the oxidation rate constant k for internal reaction layer and oxygen diffusion coefficient D for diffusion zone were obtained, which are about 1.91 × 10-10 cm2/s and 6.54 × 10-11 cm2/s, respectively.
Keywords:  Sm2Co17 magnet      maximum energy product loss      internal reaction layer      diffusion zone  
Received:  22 June 2011      Revised:  22 July 2011      Accepted manuscript online: 
PACS:  75.50.Ww (Permanent magnets)  
  75.60.Ej (Magnetization curves, hysteresis, Barkhausen and related effects)  
  81.65.Mq (Oxidation)  
  66.30.-h (Diffusion in solids)  
Fund: Project supported by the National High Technology Research and Development Program of China (Grant No. 2010AA03A401), the National Natural Science Foundation of China (Grant No. 51071010), the Aviation Foundation of China (AFC) (Grant No. 2009ZF51063), and the Fundamental Research Funds for the Central Universities.

Cite this article: 

Liu Li-Li(刘丽丽) and Jiang Cheng-Bao(蒋成保) Relation between oxidation microstructure and the maximum energy product loss of a Sm2Co17 magnet oxidized at 500 ℃ 2011 Chin. Phys. B 20 127502

[1] Kim A S 1998 J. Appl. Phys. 83 6715
[2] Liu J F, Zhang Y, Dimitrov D and Hadjipanayis G C 1999 J. Appl. Phys. 85 2800
[3] Chen R J, Zhang H W, Rong C B, Sun J R and Shen B G 2006 J. Appl. Phys. 100 043901
[4] Chen C H, Walmer M S, Walmer M H, Liu S, Kuhl E and Simon G 1998 J. Appl. Phys. 83 6706
[5] Feng H B, Chen H S, Guo Z H, Pan W, Zhu M G and Li W 2011 J. Appl. Phys. 109 07A763
[6] Gutfleisch O, Müller K H, Khlopkov K, Wolf M, Yan A, Schäfer R, Gemming T and Schultz L 2006 Acta Mater. 54 997
[7] Ma B M, Liang Y L and Bounds C O 1997 J. Appl. Phys. 81 5612
[8] Guo Z H, Pan W and Li W 2006 J. Magn. Magn. Mater. 303 e396
[9] Liu T, Guo Z H, Li X M and Li W 2009 Acta Phys. Sin. 58 2030 (in Chinese)
[10] Tang W, Zhang Y and Hadjipanayis G C 2000 J. Appl. Phys. 87 399
[11] Li X M, Fang Y K, Guo Z H, Liu T, Guo Y Q, Li W and Han B S 2008 Chin. Phys. B 17 2281
[12] Liu T and Li W 2009 Acta Phys. Sin. 58 5773 (in Chinese)
[13] Liu J F, Ding Y, Zhang Y, Dimitar D, Zhang F and Hadjipanayis G C 1999 J. Appl. Phys. 85 5660
[14] Pragnell W M, Williams A J and Evans H E 2008 J. Appl. Phys. 103 07E127
[15] Pragnell W M, Evans H E and Williams A J 2009 J. Alloys Compd. 473 389
[16] Pragnell W M, Williams A J and Evans H E 2009 J. Alloys Compd. 487 69
[17] Kub'hivcek P and Mr'azek L 1998 Czech. J. Phys. 48 1049
[18] Liu L L and Jiang C B 2011 Appl. Phys. Lett. 98 252504
[1] Coercivity enhancement of sintered Nd-Fe-B magnets by grain boundary diffusion with Pr80-xAlxCu20 alloys
Zhe-Huan Jin(金哲欢), Lei Jin(金磊), Guang-Fei Ding(丁广飞), Shuai Guo(郭帅), Bo Zheng(郑波),Si-Ning Fan(樊思宁), Zhi-Xiang Wang(王志翔), Xiao-Dong Fan(范晓东), Jin-Hao Zhu(朱金豪),Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Jing Pan(潘晶), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2023, 32(1): 017505.
[2] Magnetic properties and resistivity of a 2:17-type SmCo magnet doped with ZrO2
Qi-Qi Yang(杨棋棋), Zhuang Liu(刘壮), Chao-Yue Zhang(张超越), Hai-Chen Wu(吴海辰), Xiao-Lei Gao(高晓磊), Yi-Long Ma(马毅龙), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(7): 077504.
[3] Effects of post-sinter annealing on microstructure and magnetic properties of Nd-Fe-B sintered magnets with Nd-Ga intergranular addition
Jin-Hao Zhu(朱金豪), Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Guang-Fei Ding(丁广飞), Bo Zheng(郑波), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), and A-Ru Yan(闫阿儒). Chin. Phys. B, 2021, 30(6): 067503.
[4] Texture analysis of ultra-high coercivity Sm2Co7 hot deformation magnets
Qiang Ma(马强), Meishuang Jia(贾美爽), Zhifeng Hu(胡智峰), Ming Yue(岳明), Yanli Liu(刘艳丽), Tongyun Zhao(赵同云), and Baogen Shen(沈保根). Chin. Phys. B, 2021, 30(4): 047505.
[5] Coercivity and microstructure of sintered Nd-Fe-B magnets diffused with Pr-Co, Pr-Al, and Pr-Co-Al alloys
Lei Jin(金磊), Zhe-Huan Jin(金哲欢), Jin-Hao Zhu(朱金豪), Guang-Fei Ding(丁广飞), Bo Zheng(郑波) , Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), and Xin-Cai Liu(刘新才). Chin. Phys. B, 2021, 30(2): 027503.
[6] High performance RE–Fe–B sintered magnets with high-content misch metal by double main phase process
Yan-Li Liu(刘艳丽), Qiang Ma(马强), Xin Wang(王鑫), Jian-Jun Zhou(周建军), Tong-Yun Zhao(赵同云), Feng-Xia Hu(胡凤霞), Ji-Rong Sun(孙继荣), and Bao-Gen Shen(沈保根)†. Chin. Phys. B, 2020, 29(10): 107504.
[7] Effect of annealing temperature on coercivity of Nd-Fe-B magnets with TbFeAl doping by process of hot-pressing
Ze-Teng Shu(舒泽腾), Bo Zheng(郑波), Guang-Fei Ding(丁广飞), Shi-Cong Liao(廖是聪), Jing-Hui Di(邸敬慧), Shuai Guo(郭帅), Ren-Jie Chen(陈仁杰), A-Ru Yan(闫阿儒), Lei Shi(石磊). Chin. Phys. B, 2020, 29(5): 057501.
[8] Coercivity mechanisms in nanostructured permanent magnets
G P Zhao(赵国平), L Zhao(赵莉), L C Shen(沈来川), J Zou(邹静), L Qiu(邱雷). Chin. Phys. B, 2019, 28(7): 077505.
[9] Progress in recycling of Nd-Fe-B sintered magnet wastes
Ming Yue(岳明), Xiaowen Yin(尹小文), Weiqiang Liu(刘卫强), Qingmei Lu(路清梅). Chin. Phys. B, 2019, 28(7): 077506.
[10] Grain boundary restructuring and La/Ce/Y application in Nd-Fe-B magnets
Mi Yan(严密), Jiaying Jin(金佳莹), Tianyu Ma(马天宇). Chin. Phys. B, 2019, 28(7): 077507.
[11] Regulating element distribution to improve magnetic properties of sintered Nd-Fe-B/Tb-Fe-B composite magnets
Zhu-Bai Li(李柱柏), Jing-Yan Zuo(左敬燕), Dong-Shan Wang(王东山), Fei Liu(刘飞), Xue-Feng Zhang(张雪峰). Chin. Phys. B, 2019, 28(7): 077503.
[12] Micromagnetic simulations of reversal magnetization in cerium-containing magnets
Lei Li(李磊), Shengzhi Dong(董生智), Hongsheng Chen(陈红升), Ruijiao Jiang(姜瑞姣), Dong Li(李栋), Rui Han(韩瑞), Dong Zhou(周栋), Minggang Zhu(朱明刚), Wei Li(李卫), Wei Sun(孙威). Chin. Phys. B, 2019, 28(3): 037502.
[13] Sm–Co high-temperature permanent magnet materials
Shiqiang Liu(刘世强). Chin. Phys. B, 2019, 28(1): 017501.
[14] Realization of artificial skyrmion in CoCrPt/NiFe bilayers
Yi Liu(刘益), Yong-Ming Luo(骆泳铭), Zheng-Hong Qian(钱正洪), Jian-Guo Zhu(朱建国). Chin. Phys. B, 2018, 27(12): 127503.
[15] Nanocrystalline and nanocomposite permanent magnets by melt spinning technique
Chuanbing Rong(荣传兵), Baogen Shen(沈保根). Chin. Phys. B, 2018, 27(11): 117502.
No Suggested Reading articles found!