Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(11): 110305    DOI: 10.1088/1674-1056/20/11/110305

Long-distance quantum state transfer through cavity-assisted interaction

Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming
Laboratory of Photonic Information Technology and Laboratory of Quantum Information Technology, South China Normal University, Guangzhou 510006, China
Abstract  We propose a scheme for long-distance quantum state transfer between different atoms based on cavity-assisted interactions. In our scheme, a coherent optical pulse sequentially interacts with two distant atoms trapped in separated cavities. Through the measurement of the state of the first atom and the homodyne detection of the final output coherent light, the quantum state can be transferred into the second atom with a success probability of unity and a fidelity of unity. In addition, our scheme neither requires the high-Q cavity working in the strong coupling regime nor employs the single-photon quantum channel, which greatly relaxes the experimental requirements.
Keywords:  quantum state transfer      coherent optical pulse      homodyne detection  
Received:  11 April 2011      Revised:  25 May 2011      Published:  15 November 2011
PACS:  03.67.Hk (Quantum communication)  
  05.60.Gg (Quantum transport)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 60978009) and the National Basic Research Program of China (Grant Nos. 2009CB929604 and 2007CB925204).

Cite this article: 

Li Yu-Ning, Mei Feng, Yu Ya-Fei, Zhang Zhi-Ming Long-distance quantum state transfer through cavity-assisted interaction 2011 Chin. Phys. B 20 110305

[1] Kimble H J 2008 Nature 453 1023
[2] Ekert A K 1991 Phys. Rev. Lett. 67 661
[3] Briegel H J, Dür W, Cirac J I and Zoller P 1998 Phys. Rev. Lett. 81 5932
[4] Cleve R, Gottesman D and Lo H K 1999 Phys. Rev. Lett. 83 648
[5] Cirac J I, Zoller P, Kimble H J and Mabuchi H 1997 Phys. Rev. Lett. 78 3221
[6] Illuminati D 2006 Nat. Phys. 2 803
[7] Zhou Y L, Wang Y M, Liang L M and Li C Z 2009 Phys. Rev. A 79 044304
[8] Wei H, Deng Z J, Zhang X L and Feng M 2007 Phys. Rev. A 76 054304
[9] Leuenberger M N and Flatte M E 2005 Phys. Rev. Lett. 94 107401
[10] Duan L M, Lukin M D, Cirac J I and Zoller P 2001 Nature 414 413
[11] Ma S S and Chen M F 2009 Chin. Phys. B 18 3247
[12] Mei F, Yu Y F, Feng X L, Zhang Z M and Oh C H 2010 Phys. Rev. A 82 052315
[13] Mei F, Feng M, Yu Y F and Zhang Z M 2009 Phys. Rev. A 80 042319
[14] Mei F, Yu Y F, Feng X L, Zhu S L and Zhang Z M 2010 Europhys. Lett. 91 10001
[15] Yurke B and Stoler D 1986 Phys. Rev. Lett. 57 13
[16] Nemoto K and Munro W J 2004 Phys. Rev. Lett. 93 250502
[17] Louis S G R, Nemoto K, Munro W J and Spiller T P 2007 New J. Phys. 9 193
[18] Nussmann S, Hijlkema M, Weber B, Rohde F, Rempe G and Kuhn A 2005 Phys. Rev. Lett. 95 173602
[19] Colombe Y, Steinmetz T, Dubois G, Linke F, Hunger D and Reichel J 2007 Nature 450 272
[1] Enhancement of multiatom non-classical correlations and quantum state transfer in atom-cavity-fiber system
Qi-Liang He(贺启亮), Jian Sun(孙剑), Xiao-Shu Song(宋晓书), and Yong-Jun Xiao(肖勇军). Chin. Phys. B, 2021, 30(1): 010305.
[2] Fast achievement of quantum state transfer and distributed quantum entanglement by dressed states
Liang Tian(田亮), Li-Li Sun(孙立莉), Xiao-Yu Zhu(朱小瑜), Xue-Ke Song(宋学科), Lei-Lei Yan(闫磊磊), Er-Jun Liang(梁二军), Shi-Lei Su(苏石磊), Mang Feng(冯芒). Chin. Phys. B, 2020, 29(5): 050306.
[3] Quantum state transfer via a hybrid solid-optomechanical interface
Pei Pei(裴培), He-Fei Huang(黄鹤飞), Yan-Qing Guo(郭彦青), Xing-Yuan Zhang(张兴远), Jia-Feng Dai(戴佳峰). Chin. Phys. B, 2018, 27(2): 024203.
[4] Optomechanical state transfer between two distant membranes in the presence of non-Markovian environments
Jiong Cheng(程泂), Xian-Ting Liang(梁先庭), Wen-Zhao Zhang(张闻钊), Xiangmei Duan(段香梅). Chin. Phys. B, 2018, 27(12): 120302.
[5] Quantum interference between heralded single photon stateand coherent state
Lei Yang(杨磊), Xiaoxin Ma(马晓欣), Xiaoying Li(李小英). Chin. Phys. B, 2017, 26(7): 074206.
[6] Quantum information transfer between topological and conventional charge qubits
Jun Li(栗军) and Yan Zou(邹艳). Chin. Phys. B, 2016, 25(2): 027302.
[7] Quantum state transfer between atomic ensembles trapped in separate cavities via adiabatic passage
Zhang Chun-Ling, Chen Mei-Feng. Chin. Phys. B, 2015, 24(7): 070310.
[8] High-dimensional quantum state transfer in a noisy network environment
Qin Wei, Li Jun-Lin, Long Gui-Lu. Chin. Phys. B, 2015, 24(4): 040305.
[9] Generation of hyperentangled four-photon cluster state via cross-Kerr nonlinearity
Yan Xiang, Yu Ya-Fei, Zhang Zhi-Ming. Chin. Phys. B, 2014, 23(6): 060306.
[10] Distributed quantum computation with superconducting qubit via LC circuit using dressed states
Wu Chao, Fang Mao-Fa, Xiao Xing, Li Yan-Ling, Cao Shuai. Chin. Phys. B, 2011, 20(2): 020305.
[11] High entanglement generation and high fidelity quantum state transfer in a non-Markovian environment
Li Yan-Ling, Fang Mao-Fa. Chin. Phys. B, 2011, 20(10): 100312.
[12] Transferring an N-atom state between two distant cavities via an optical fiber
Ma Song-She, Chen Mei-Feng. Chin. Phys. B, 2009, 18(8): 3247-3250.
[13] Quantum communication in spin star configuration
Deng Hong-Liang, Fang Xi-Ming. Chin. Phys. B, 2008, 17(2): 702-709.
No Suggested Reading articles found!