Please wait a minute...
Chin. Phys. B, 2011, Vol. 20(1): 017802    DOI: 10.1088/1674-1056/20/1/017802

An investigation on the magneto-optic properties of terbium gallium garnet under high magnetic field

Xia Tiana, Zhang Xue-Longa, Yang Guob, Zhang Guo-Yingb, Gao Jiaob, Xue Liu-Pingb
a College of Medical Mechanism, Shanghai University of Science and Technology, Shanghai 200093, China; b Department of Physics, College of Science, China University of Mining and Technology, Xuzhou 221008, China
Abstract  The superexchange interaction on a magnetic ion may be represented by an effective field Hm = λM in some paramagnetic materials, here λ is the coefficient of effective field and M = χHe with χ being the magnetic susceptibility and He being the applied field. The variation of the equivalent λχ with the dynamic applied field is given and the crystal field-splitting levels of the excited configuration 4f75d1 of the Tb3+ ion are calculated in the Tb3Ga5O12. By means of the effective field Hm and the applied field He, the Faraday rotation of Tb3Ga5O12 at 6 K and 41 K, under the high magnetic field and at 0.63 μm wavelength, are presented. Our calculated results are in agreement with the experimental data.
Keywords:  terbium gallium garnet      high applied field      superexchange interaction      magneto-optical properties     
Received:  19 January 2010      Published:  15 January 2011
PACS:  78.20.Ls (Magneto-optical effects)  
Fund: Project supported by the Fundamental Research Funds for the Central Universities (Grant No. 2010LKWL07) and the National Basic Research Program of China (Grant No. 2010CB226805).

Cite this article: 

Yang Guo, Zhang Guo-Ying, Gao Jiao, Xue Liu-Ping, Xia Tian, Zhang Xue-Long An investigation on the magneto-optic properties of terbium gallium garnet under high magnetic field 2011 Chin. Phys. B 20 017802

[1] Kaminskii A A, Eichler H J, Reiche P and Uecker R 2005 Laser Phys. Lett. 2 489
[2] Zvezdin AK and Kotov A V 1997 Modern Magneto-Optics and Magnetooptical Materials. (Bristol: IOP Publishing) p163
[3] Levitin R Z, Zvezdin A K, von Ortenberg M, Platonov V V, Plis V I, Popov A I, Puhlmann N and Tatsenko M 2002 Phys. Solid State 44 2107
[4] Plis V I and Popov A I 2004 Phys. Solid State 46 2155
[5] Brandle C D, Miller D C and Nielsen J W 1972 J. Cryst. Growth 12 195
[6] Guillot A, Marchand A, Nekvasil V and Tcheou F 1985 J. Phys. C 18 3547
[7] Zhu N F, Li Y X and Yu X F 2008 Mater. Lett. 62 2355
[8] Harbus F and Stanly H E 1973 Phys. Rev. 88 1156
[9] Liu G Q and Huang Y P 1988 Acta Phys. Sin. 54 1626 (in Chinese)
[10] Liu G Q, Zhang X, Zhang N G and Yuan B 1995 Progress in Natural Science 5 591 (in Chinese)
[11] Wang W, Zhang X J and Liu G Q 2005 Physica B 365 201
[12] Miles P A, Westphal W B and Van Hippel A 1957 Rev. Mod. Phys. 29 279
[13] Crossley W A, Cooper E W and Page J L 1969 Phys. Rev. 181 896
[14] Zhang G Y, Xia T, Xue L P and Zhang X L 2006 Phys. Lett. A 360 327
[15] Zhang G Y, Wei M, Xia W S and Yang G 2009 J. Magn. Magn. Mater. 321 3077
[16] Zhang G Y, Xia T, Zhang X L and Xue L P 2008 Chin. Phys. B 17 3093 endfootnotesize
[1] Thickness-dependent magnetic order and phase transition in V5S8
Rui-Zi Zhang(张瑞梓), Yu-Yang Zhang(张余洋), Shi-Xuan Du(杜世萱). Chin. Phys. B, 2020, 29(7): 077504.
[2] Double spin-glass-like behavior and antiferromagnetic superexchange interaction between Fe3+ ions in α-Ga2-xFexO3 (0 ≤ x ≤ 0.4)
Lv Yi-Fei, Xiang Jian-Yong, Wen Fu-Sheng, Lv Wei-Ming, Hu Wen-Tao, Liu Zhong-Yuan. Chin. Phys. B, 2015, 24(3): 037502.
[3] The variation of Mn-dopant distribution state with x and its effect on the magnetic coupling mechanism in Zn1-xMnxO nanocrystals
Cheng Yan, Hao Wei-Chang, Li Wen-Xian, Xu Huai-Zhe, Chen Rui, Dou Shi-Xue. Chin. Phys. B, 2013, 22(10): 107501.
[4] Theoretical analysis of the anisotropy of the magnetization of the Ho3+ ion in holmium iron garnet single crystals
Ma Sheng-Can, Xu You, Yang Jie-Hui. Chin. Phys. B, 2008, 17(2): 710-715.
No Suggested Reading articles found!