Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(6): 060504    DOI: 10.1088/1674-1056/19/6/060504
GENERAL Prev   Next  

Convergent robust stabilization conditions for fuzzy chaotic systems based on the edgewise subdivision approach

Zhang Hua-Guang(张化光)a) b)†ger, Xie Xiang-Peng(解相朋)a)‡, and Wang Xing-Yuan(王兴元)c)
a School of Information Science and Engineering, Northeastern University, Shenyang 110004, China; b Key Laboratory of Integrated Automation of Process Industry, Ministry of Education, Northeastern University, Shenyang 110004, China; c School of Electronic and Information Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  This paper concerns the problem of stabilizing fuzzy chaotic systems via the viewpoint of the edgewise subdivision approach. Firstly, a new edgewise subdivision algorithm is proposed to implement the simplex edgewise subdivision which divides the overall fuzzy chaotic systems into a lot of sub-systems by a kind of algebraic description. These sub-systems have the same volume and shape characteristics. Secondly, a novel kind of control scheme which switches by the transfer of different operating sub-systems is proposed to achieve convergent stabilization conditions for the underlying controlled fuzzy chaotic systems. Finally, a numerical example is given to demonstrate the validity of the proposed methods.
Keywords:  chaotic system      Takagi--Sugeno fuzzy model      convergent stabilization conditions      edgewise subdivision  
Received:  13 October 2009      Accepted manuscript online: 
PACS:  07.05.Mh (Neural networks, fuzzy logic, artificial intelligence)  
  05.45.Gg (Control of chaos, applications of chaos)  
  07.05.Dz (Control systems)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos.~50977008, 60774048 and 60821063), the Program for Cheung Kong Scholars and National Basic Research Program of China (Grant No.~2009CB320601).

Cite this article: 

Zhang Hua-Guang(张化光), Xie Xiang-Peng(解相朋), and Wang Xing-Yuan(王兴元) Convergent robust stabilization conditions for fuzzy chaotic systems based on the edgewise subdivision approach 2010 Chin. Phys. B 19 060504

[1] Ott E, Grrebogi C and Yorke J A 1990 Phys. Rev. Lett. 64 1196
[2] Tan W and Wang Y N 2004 Chin. Phys. 13 459
[3] Wang S H, Liu W Q, Ma B J, Xiao J H and Jiang D Y 2005 Chin. Phys. 14 55
[4] Tan W and Wang Y N 2005 Chin. Phys. 14 72
[5] Zhou Y F and Tse C K 2005 Chin. Phys. 14 61
[6] Zhang H and Ma X K 2005 Chin. Phys. 14 86
[7] Wang Y N, Tan W and Duan F 2006 Chin. Phys. 15 89
[8] Wang X Y and Meng J 2009 Acta Phys. Sin. 58 3780 (in Chinese)
[9] Takagi K and Sugeno M 1985 IEEE Trans. Syst. Man. Cybern. 15 116
[10] Yang D S, Zhang H G, Li A P and Meng Z Y 2007 Acta Phys. Sin. 56 3121 (in Chinese)
[11] Zhang H G, Zhao Y and Yu W 2008 Chin. Phys. B 17 4056
[12] Meng J and Wang X Y 2009 Acta Phys. Sin. 58 819 (in Chinese)
[13] Sala A and Arino C 2007 Fuzzy Sets and Systems 158 2671
[14] Zhang X H and Li D 2009 Chin. Phys. B 18 1774
[15] Feng G 2004 IEEE Trans. Syst. Man. Cybern. Part B 34 283
[16] Guerra T M and Vermeiren L 2004 Automatica 40 823
[17] Kruszewski A, Wang R and Guerra T M 2008 IEEE Trans. Auto. Contr. 53 606
[18] Guerra T M, Kruszewski A and Bernal M 2009 IEEE Trans. Fuzzy Systems 17 724
[19] Lam H K and Leung H F 2007 IEEE Trans. Syst. Man. Cybern. Part B 37 1396
[20] Zhao Y, Zhang H G and Zheng C D 2008 Chin. Phys. B 17 529
[21] Ma T D, Zhang H G and Fu J 2008 Chin. Phys. B 17 4407
[22] Edelsbrunner H and Grayson D R 2000 Discrete Comput. Geom. 24 707
[23] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 969
[24] Zhang H G, Fu J, Ma T D and Tong S C 2009 Chin. Phys. B 18 3751
[25] Ma D Z, Wang Z S, Zhang H G and Feng J 2010 Chin. Phys. B 19 050506
[26] Liu J H, Zhang H G and Feng J 2008 Acta Phys. Sin. 57 6868 (in Chinese)
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[4] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[5] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[6] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[7] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[8] Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors
Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚). Chin. Phys. B, 2021, 30(8): 080503.
[9] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[10] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[11] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[12] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
[13] Adaptive synchronization of chaotic systems with less measurement and actuation
Shun-Jie Li(李顺杰), Ya-Wen Wu(吴雅文), and Gang Zheng(郑刚). Chin. Phys. B, 2021, 30(10): 100503.
[14] Design and multistability analysis of five-value memristor-based chaotic system with hidden attractors
Li-Lian Huang(黄丽莲), Shuai Liu(刘帅), Jian-Hong Xiang(项建弘), and Lin-Yu Wang(王霖郁). Chin. Phys. B, 2021, 30(10): 100506.
[15] A novel method of constructing high-dimensional digital chaotic systems on finite-state automata
Jun Zheng(郑俊), Han-Ping Hu(胡汉平). Chin. Phys. B, 2020, 29(9): 090502.
No Suggested Reading articles found!