Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(4): 044207    DOI: 10.1088/1674-1056/19/4/044207
CLASSICAL AREAS OF PHENOMENOLOGY Prev   Next  

The aggregation effects on the two-photon absorption properties of para-nitroaniline polymers by hydrogen-bond interactions

Li Jinga, Zhao Kea, Wang Chuan-Kuia, Sun Yuan-Hongb
a College of Physics and Electronics, Shandong Normal University,Jinan 250014, China; b Fundamental Division of Shandong Police College, Jinan 250014, China
Abstract  This paper has theoretically designed a series of aggregate polymers on the basis of several para-nitroaniline monomers by hydrogen-bond interactions. At the level of time-dependent hybrid density functional theory, it has optimized their geometrical structures and studied their two-photon absorption (TPA) properties by using analytical response theory. The calculated results exhibit that the aggregation effects not only bring out the considerable red shift of the excited energies but also greatly enhance the TPA intensities of the aggregate polymers in comparison with the para-nitroaniline monomer. The aggregate configurations also have an important influence on the TPA abilities of the polymers; the trimer has the largest TPA cross section. The electron transitions between the molecular orbits involving the strong TPA excitations of the trimer are depicted to illuminate the relationship between the intermolecular charge transfer and the TPA property.
Keywords:  two-photon absorption      aggregation effect      analytical response theory     
Received:  18 April 2009      Published:  15 April 2010
PACS:  61.41.+e (Polymers, elastomers, and plastics)  
Fund: Project supported by the State Key Development Program for Basic Research of China (Grant No.~2006CB806000), the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics), Natural Science Foundatio

Cite this article: 

Sun Yuan-Hong, Li Jing, Zhao Ke, Wang Chuan-Kui The aggregation effects on the two-photon absorption properties of para-nitroaniline polymers by hydrogen-bond interactions 2010 Chin. Phys. B 19 044207

[1] Tutt L W and Kost A 1992 Nature 356 225
[2] Cumpston B H, Ananthavel S P, Barlow S, Dyer D L, Ehrlich J E, Erskine L L, Heikal A A, Kuebler S M, Lee I Y, McCord-Maughon D, Qin J Q, R?ckel H, Rumi M, Wu X L, Marder S R and Perry J W 1999 Natur}e 398 51
[3] Parthenopoulos D A and Rentzepis P M 1989 Science 245 }843
[4] Bhawalkar J D, Kumar N D, Zhao C and Prasad P N 1997 J. Clin. Laser Med. Surg. } 15 201
[5] Denk W, Strickler J H and Webb W W 1990 Science 248 73
[6] Zhou W H, Kuebler S M, Braun K L, Yu T Y, Cammack J K, Ober C K, Perry J W and Marder S R 2002 Science 296 1106
[7] Yan Y X, Tao X T, Sun Y H, Xu G B, Wang C K, Yang J X, Zhao X, Wu Y Z, Ren Y and Jiang M H 2005 Mater. Chem. Phys. 90 139
[8] Norman P, Cronstrand P and Ericsson 2002 J. Chem. Phys. 285 207
[9] Sun Y H, Zhao K, Wang C K, Luo Y, Yan Y X, Tao X T and Jiang M H 2005 Chin. Phys. 14 115
[10] Zhao K, Sun Y H, Wang C K, Luo Y, Zhang X, Yu X Q and Jiang M H 2005 Acta Phys. Sin. 54 2662 (in Chinese)
[11] Fisher J A N, Susumu F K, Therien M J and Yodh A G 2009 J. Chem. Phys. 130] 134506
[12] Zhao Y, Ren A M, Feng J K and Sun C C 2008 J. Chem. Phys. 129 014301
[13] Huang X M, Tao L M, Guo Y H, Gao Y and Wang C K 2007 Acta Phys. Sin. 56 2570 (in Chinese)
[14] Zhao K, Ferrighi L, Frediani L, Wang C K and Luo Y 2007 J. Chem. Phys. 126] 204509
[15] Munn R W, Luo Y and Macák P and {\AA}gren H 2001 J. Chem. Phys. 114 3105
[16] Guo Y H, Sun Y H, Tao L M, Zhao K and Wang C K 2005 Chin. Phys. 14 2202
[17] Sun Y H, Zhao K and Wang C K 2005 Acta Chim. Sin. 63 1116 (in Chinese)
[18] Liu K, Wang Y H, Tu Y Q, {\AA}gren H and Luo Y 2007 J. Chem. Phys. 127 026101
[19] Liu K, Wang Y H, Tu Y Q, ?gren H and Luo Y 2008 J. Phys. Chem. B 112 4387
[20] Liu Z J, Shao P, Huang Z L, Liu B, Chen T and Qin J G 2008 Chem. Commun.} 2260
[21] Tu Y Q, Luo Y and {\AA}gren H 2005 J. Phys. Chem. B 109 16730
[22] Monson P R and McClain W M 1970 J. Chem. Phys. 53 29
[23] Albota M, Beljonne D, Brèdas J L, Ehrlich J E, Fu J Y, Heikal A A, Hess S E, Kogej T, Levin M D, Marder S R, McCord-Maughon D, Perry J W, R?ckel H, Rumi M, Subramaniam G, Webb W W, Wu X L and Xu C 1998 Science 281 1653
[24] Lin N, Zhao X, Yang J X, Jiang M H, Liu J C, Wang C K, Shi W, Meng J and Weng J 2006 J. Chem. Phys. 124 024704
[1] Responsive mechanism and coordination mode effect of a bipyridine-based two-photon fluorescent probe for zinc ion
Han Zhang(张瀚), Zhe Shao(邵哲), Ke Zhao(赵珂). Chin. Phys. B, 2020, 29(8): 083304.
[2] Soliton evolution and control in a two-mode fiber with two-photon absorption
Qianying Li(李倩颖). Chin. Phys. B, 2020, 29(1): 014204.
[3] High-power ultraviolet 278-nm laser from fourth-harmonic generation of an Nd: YAG amplifier in CsB3O5 crystal
Miao He(何苗), Feng Yang(杨峰), Cheng Dong(董程), Zhi-Chao Wang(王志超), Lei Yuan(袁磊), Yi-Ting Xu(徐一汀), Guo-Chun Zhang(张国春), Zhi-Min Wang(王志敏), Yong Bo(薄勇), Qin-Jun Peng(彭钦军), Da-Fu Cui(崔大复), Yi-Cheng Wu(吴以成), Zu-Yan Xu(许祖彦). Chin. Phys. B, 2018, 27(5): 054211.
[4] Responsive mechanism and molecular design of di-2-picolylamine-based two-photon fluorescent probes for zinc ions
Mei-Yu Zhu(朱美玉), Ke Zhao(赵珂), Jun Song(宋军), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(2): 023302.
[5] Up-conversion luminescence tuning in Er3+-doped ceramic glass by femtosecond laser pulse at different laser powers
Wen-Jing Cheng(程文静), Guo Liang(梁果), Ping Wu(吴萍), Shi-Hua Zhao(赵世华), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(12): 123201.
[6] Isomerism and coordination mode effects on two-photon absorption of tris(picolyl)amine-based fluorescent probes for zinc ions
Ke Zhao(赵珂), Jun Song(宋军), Mei-Yu Zhu(朱美玉), Han Zhang(张瀚), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2018, 27(10): 103301.
[7] Optical power limiting of ultrashort hyper-Gaussian pulses in cascade three-level system
Ji-Cai Liu(刘纪彩), Fen-Fen Guo(郭芬芬), Ya-Nan Zhao(赵亚男), Xing-Zhe Li(李兴哲). Chin. Phys. B, 2018, 27(10): 104209.
[8] Simulating resonance-mediated two-photon absorption enhancement in rare-earth ions by a rectangle phase modulation
Da-Long Qi(齐大龙), Ye Zheng(郑烨), Wen-Jing Cheng(程文静), Yun-Hua Yao(姚云华), Lian-Zhong Deng(邓联忠), Dong-Hai Feng(冯东海), Tian-Qing Jia(贾天卿), Zhen-Rong Sun(孙真荣), Shi-An Zhang(张诗按). Chin. Phys. B, 2018, 27(1): 013202.
[9] Responsive mechanism of three novel hypochlorous acid fluorescent probes and solvent effect on their sensing performance
Yong Zhou(周勇), Yun-Kun Wang(王云坤), Xiao-Fei Wang(王晓菲), Yu-Jin Zhang(张玉瑾), Chuan-Kui Wang(王传奎). Chin. Phys. B, 2017, 26(8): 083102.
[10] Responsive mechanism of 2-(2'-hydroxyphenyl)benzoxazole-based two-photon fluorescent probes for zinc and hydroxide ions
Zhang Yu-Jin, Zhang Qiu-Yue, Ding Hong-Juan, Song Xiu-Neng, Wang Chuan-Kui. Chin. Phys. B, 2015, 24(2): 023301.
[11] Polarization and phase control of two-photon absorption in an isotropic molecular system
Lu Chen-Hui, Zhang Hui, Zhang Shi-An, Sun Zhen-Rong. Chin. Phys. B, 2012, 21(12): 123202.
[12] Influence of rotational isomerism on two-photon absorption properties of FTC chromophores
Han Guang-Chao, Zhao Ke, Liu Peng-Wei, Zhang Li-Li. Chin. Phys. B, 2012, 21(11): 118201.
[13] Highly selective population of two excited states in nonresonant two-photon absorption
Zhang Hui, Zhang Shi-An, Sun Zhen-Rong. Chin. Phys. B, 2011, 20(8): 083202.
[14] One- and two-photon absorption properties of two metalloporphyrin complexes
Sun Yuan-Hong, Wang Chuan-Kui. Chin. Phys. B, 2011, 20(10): 104204.
[15] The theoretical studies on the two-photon absorption properties of symmetric 1,4-bis{2-[4-(2-aryl)phenyl]vinyl}-2,5-bisdialkoxybenzenes
Sun Yuan-Hong, Li Long-He, Li Jing, Wang Chuan-Kui. Chin. Phys. B, 2010, 19(8): 083102.
No Suggested Reading articles found!