Please wait a minute...
Chin. Phys. B, 2010, Vol. 19(11): 119401    DOI: 10.1088/1674-1056/19/11/119401
GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS Prev   Next  

Improvement of the axial trapping effect using azimuthally polarised trapping beam

Li Xue-Cong, Sun Xiu-Dong
Department of Physics, Harbin Institute of Technology, Harbin 150001, China
Abstract  A dual optical tweezers system, which consists of a doughnut mode optical tweezer (DMOT) with the azimuthally polarised trapping beam and a solid mode optical tweezer (SMOT) with the Gauss trapping beam was constructed to compare the axial trapping effect of DMOT and SMOT. The long-distance axial trapping of ST68 microbubbles (MBs) achieved by DMOT was more stable than that of SMOT. Moreover the axial trapping force measured using the viscous drag method, was depended on the diameter of the particle, the laser power, and the numerical aperture (NA) of the objective lens. The measurement of the axial trapping force and the acquisition of CCD images of trapping effect confirmed that the DMOT showed excellent axial trapping ability than SMOT. A simple and effective method is developed to improve axial trapping effect using the azimuthally polarized beam as trapping beam. This is helpful for the long-distance manipulating of particles especially polarised biological objects in axial direction.
Keywords:  axial trapping force      ST68 microbubbles      optical tweezers      azimuthally polarised beam  
Received:  27 April 2010      Revised:  08 June 2010      Published:  15 November 2010
PACS:  42.60.Jf (Beam characteristics: profile, intensity, and power; spatial pattern formation)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10674037), the National Basic Research Program of China (Grant No. 2007CB307001), and the program of excellent Team in Harbin Institute of Technology of China.

Cite this article: 

Li Xue-Cong, Sun Xiu-Dong Improvement of the axial trapping effect using azimuthally polarised trapping beam 2010 Chin. Phys. B 19 119401

[1] Ashkin A, Dziedzic J M, Bjorkholm J E and Chu S 1986 Opt. Lett. 11 288
[2] Kou S C and Sheetz M P 1993 Science 260 232
[3] Xu S H, Li Y M, Lou L R and Sun Z W 2005 Chin. Phys. 14 382
[4] Li Q, Feng W L, Hu X M, Cao Q, Sha D G and Lin J M 2008 Chin. Phys. B 17 726
[5] Domachuk P, Magi E, Eggleton B J and Cronin-Golomb M 2006 Appl. Phys. Lett. 89 071106
[6] Kress H, Stelzer E H K, Griffiths G and Rohrbach A 2005 Phys. Rev. E 71 061927
[7] Nieminen T A, Heckenberg N R and Rubinsztein-Dunlop H 2008 Opt. Lett. 33 122
[8] Stalder M and Schadt M 1996 Opt. Lett. 21 1948
[9] Gao X M, Li J S, Wang J and Zhuang S L 2009 Optik doi:10.1016/j.ijleo.2009.04.013
[10] Zhan Q W 2003 J. Opt. A: Pure Appl. Opt. 5 229
[11] Youngworth K S and Brown T G 2000 Opt. Express 7 77
[12] Quabis S, Dorn R, Eberler M, Glockl O and Leuchs G 2001 Appl. Phys. B 72 109
[13] Zhan Q W and Leger J G 2002 Opt. Express 10 324
[14] Yan S H and Yao B L 2007 Phys. Rev. A 76 053836
[15] Peng F, Yao B L, Yan S H, Zhao W and Lei M 2009 J. Opt. Soc. Am. B 26 2242
[16] Basude R, Duckworth J W and Wheatley M A 2000 Ultrasound in Med. Biol. 26 621
[17] Felgner H, Muller O and Schliwa M 1995 Appl. Opt. 34 977
[18] Ashkin A 1992 Biophys J. 61 569 endfootnotesize
[1] In situ calibrating optical tweezers with sinusoidal-wave drag force method
Li Di, Zhou Jin-Hua, Hu Xin-Yao, Zhong Min-Cheng, Gong Lei, Wang Zi-Qiang, Wang Hao-Wei, Li Yin-Mei. Chin. Phys. B, 2015, 24(11): 118703.
[2] Theoretical study of the trapping efficiency of an optical tweezers array system
Li Qin, Hu Xiao-Ming, Cao Qun, Feng Wan-Li, Sha Ding-Guo, Lin Jia-Ming. Chin. Phys. B, 2008, 17(2): 726-735.
[3] Systematical study of the trapping forces of optical tweezers formed by different types of optical ring beams
Xu Sheng-Hua, Li Yin-Mei, Lou Li-Ren. Chin. Phys. B, 2006, 15(6): 1391-1397.
[4] Oscillatory disturbance in force calibration of optical tweezers
Liu Chun-Xiang, Guo Hong-Lian, Li Zhao-Lin, Cheng Bing-Ying, Zhang Dao-Zhong, Jiang Yu-Qiang. Chin. Phys. B, 2005, 14(4): 729-733.
[5] Computer simulation of the collision frequency of two particles in optical tweezers
Xu Sheng-Hua, Li Yin-Mei, Lou Li-Ren, Sun Zhi-Wei. Chin. Phys. B, 2005, 14(2): 382-385.
[6] EFFECT OF SPHERICAL ABERRATION INTRODUCED BY WATER SOLUTION ON TRAPPING FORCE
Yao Xin-cheng, Li Zhao-lin, Guo Hong-lian, Cheng Bing-ying, Zhang Dao-zhong, Han Xue-hai. Chin. Phys. B, 2000, 9(11): 824-826.
[7] CONSTRUCTION OF AN OPTICAL TWEEZERS—CALCULATION AND EXPERIMENTS
Gao Chong-ming, Sun Wei, Wang Yi-qiu. Chin. Phys. B, 2000, 9(11): 855-860.
No Suggested Reading articles found!