Special Issue:
SPECIAL TOPIC — Quantum communication and quantum network
|
SPECIAL TOPIC — Quantum communication and quantum network |
Prev
Next
|
|
|
Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide |
Ji-Ning Zhang(张继宁), Tong-Yu Zhang(张同宇), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓)†, and Shi-Ning Zhu(祝世宁) |
National Laboratory of Solid State Microstructures, School of Physics, Nanjing University, Nanjing 210093, China |
|
|
Abstract Broadband photon pairs are highly desirable for quantum metrology, quantum sensing, and quantum communication. Such sources are usually designed through type-0 phase-matching spontaneous parametric down-conversion (SPDC) that makes the photon pairs hard to separate in the frequency-degenerate case and thus limits their applications. In this paper, we design a broadband frequency-degenerate telecom-band photon pair source via the type-II SPDC in a dispersion-engineered thin-film lithium niobate waveguide, where the polarization modes of photon pairs are orthogonal and thus are easily separated deterministically. With a 5-mm-long waveguide, our design can achieve a bandwidth of 5.56 THz (44.8 nm), which is 8.6 times larger than that of the bulk lithium niobate, and the central wavelength can be flexibly adjusted. Our design is a promising approach towards high-quality integrated photon sources and may have wide applications in photonic quantum technologies.
|
Received: 09 August 2024
Revised: 29 August 2024
Accepted manuscript online: 30 August 2024
|
|
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2019YFA0705000), Innovation Program for Quantum Science and Technology (Grant No. 2021ZD0301500), Leading-edge Technology Program of Jiangsu Natural Science Foundation (Grant No. BK20192001), and the National Natural Science Foundation of China (Grant Nos. 51890861 and 11974178). |
Corresponding Authors:
Yan-Xiao Gong
E-mail: gongyanxiao@nju.edu.cn
|
Cite this article:
Ji-Ning Zhang(张继宁), Tong-Yu Zhang(张同宇), Jia-Chen Duan(端家晨), Yan-Xiao Gong(龚彦晓), and Shi-Ning Zhu(祝世宁) Generation of broadband polarization-orthogonal photon pairs via the dispersion-engineered thin-film lithium niobate waveguide 2024 Chin. Phys. B 33 110301
|
[1] Wengerowsky S, Joshi S K, Steinlechner F, Hübler H and Ursin R 2018 Nature 564 225 [2] Joshi S K, Aktas D, Wengerowsky S, Lončarić M, Neumann S P, Liu B, Scheidl T, Lorenzo G C, Samec Z, Kling L, Qiu A, Razavi M, Stipčević M, Rarity J and Ursin R 2020 Sci. Adv. 6 eaba0959 [3] Giovannetti V, Lloyd S and Maccone L 2011 Nat. Photon. 5 222 [4] Chen Y, Hong L and Chen L 2022 Front. Phys. 10 892519 [5] Katamadze K, Pashchenko A, Romanova A and Kulik S 2022 JETP Lett. 115 581 [6] Abouraddy A F, Nasr M B, Saleh B E A, Sergienko A V and Teich M C 2002 Phys. Rev. A 65 053817 [7] Boto A N, Kok P, Abrams D S, Braunstein S L, Williams C P and Dowling J P 2000 Phys. Rev. Lett. 85 2733 [8] D’Angelo M, Chekhova M V and Shih Y 2001 Phys. Rev. Lett. 87 013602 [9] Saleh B E A, Jost B M, Fei H B and Teich M C 1998 Phys. Rev. Lett. 80 3483 [10] Giovannetti V, Lloyd S and Maccone L 2004 Science 306 1330 [11] Quan R, Dong R, Zhai Y, Hou F, Xiang X, Zhou H, Lv C, Wang Z, You L, Liu T and Zhang S 2019 Opt. Lett. 80 3483 [12] Tanzilli S, De Riedmatten H, Tittel W, Zbinden H, Baldi P, De Micheli M, Ostrowsky D B and Gisin N 2001 Electron. Lett. 37 26 [13] Dayan B, Pe’er A, Friesem A A and Silberberg Y 2005 Phys. Rev. Lett. 94 043602 [14] Nasr M B, Carrasco S, Saleh B E A, Sergienko A V, Teich M C, Torres J P, Torner L, Hum D S and Fejer M M 2008 Phys. Rev. Lett. 100 199903 [15] Javid U A, Ling J, Staffa J, Li M, He Y and Lin Q 2021 Phys. Rev. Lett. 127 183601 [16] Fang X X, Wang L and Lu H 2024 Opt. Express 32 22945 [17] Carrasco S, Nasr M B, Sergienko A V, Saleh B E A, Teich M C, Torres J P and Torner L 2006 Opt. Lett. 31 253 [18] Okano M, Okamoto R, Tanaka A, Subashchandran S and Takeuchi S 2012 Opt. Express 20 13977 [19] Rubin M H, Klyshko D N, Shih Y H and Sergienko A V 1994 Phys. Rev. A 50 5122 [20] Fraine A, Minaeva O, Simon D, Egorov R and Sergienko A 2012 Opt. Lett. 37 1910 [21] Shimizu R and Edamatsu K 2009 Opt. Express 17 16385 [22] Saravi S, Pertsch T and Setzpfandt F 2021 Adv. Opt. Mater. 9 2100789 [23] Vazimali M G and Fathpour S 2022 Adv. Photon. 4 034001 [24] Jankowski M, Langrock C, Desiatov B, Marandi A, Wang C, Zhang M, Phillips C R, Lončar M and Fejer M M 2020 Optica 7 40 [25] Jankowski M, Jornod N, Langrock C, Desiatov B, Marandi A, Lončar M and Fejer M M 2022 Optica 9 273 [26] Ledezma L, Sekine R, Guo Q, Nehra R, Jahani S and Marandi A 2022 Optica 9 303 [27] Hwang A Y, Stokowski H S, Park T, Jankowski M, McKenna T P, Langrock C, Mishra J, Ansari V, Fejer M M and Safavi-Naeini A H 2023 Optica 10 1535 [28] Xue G T, Niu Y F, Liu X, Duan J C, Chen W, Pan Y, Jia K, Wang X, Liu H Y, Zhang Y, Xu P, Zhao G, Cai X, Gong Y X, Hu X, Xie Z and Zhu S 2021 Phys. Rev. Appl. 15 064059 [29] Zelmon D E, Small D L and Jundt D 1997 J. Opt. Soc. Am. B 14 3319 [30] Yang Z, Liscidini M and Sipe J E 2008 Phys. Rev. A 77 033808 [31] Luo R, He Y, Liang H, Li M and Lin Q 2018 Optica 5 1006 [32] Duan J C, Zhang J N, Zhu Y J, Sun C W, Liu Y C, Xu P, Xie Z, Gong Y X and Zhu S N 2020 J. Opt. Soc. Am. B 37 2139 [33] Wang C, Langrock C, Marandi A, Jankowski M, Zhang M, Desiatov B, Fejer M M and Lončar M 2018 Optica 5 1438 [34] Zhao J, Ma C, Rüsing M and Mookherjea S 2020 Phys. Rev. Lett. 124 163603 [35] Wei B, Cai W H, Ding C, Deng G W, Shimizu R, Zhou Q and Jin R B 2021 Opt. Express 29 256 [36] Sensarn S, Yin G Y and Harris S E 2010 Phys. Rev. Lett. 104 253602 [37] Katamadze K and Kulik S 2011 J. Exp. Theor. Phys. 112 20 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|