Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(5): 050203    DOI: 10.1088/1674-1056/acaa26
GENERAL Prev   Next  

Effect of magnetic nanoparticles on magnetic field homogeneity

Si-Lin Guo(郭斯琳)1,2,†, Wen-Tong Yi(易文通)3, and Zhuang-Zhuang Li(李壮壮)3
1 Laboratory of Science and Technology on Integrated Logistics Support, National University of Defense Technology, Changsha 410073, China;
2 College of Intelligence Science and Technology, National University of Defense Technology, Changsha 410073, China;
3 School of Artificial Intelligence and Automation, Huazhong University of Science and Technology, Wuhan 430074, China
Abstract  The mechanism of magnetic nanoparticles (MNPs) affecting magnetic field uniformity is studied in this work. The spatial distribution of MNPs in liquid is simulated based on Monte Carlo method. The induced field of the single MNP is combined with the magnetic field distribution of magnetofluid. In the simulation, magnetic field uniformity is described by a statistical distribution. As the chemical shift (CS) and full width at half maximum (FWHM) of magnetic resonance (MR) spectrum can reflect the uniformity of magnetic field, the simulation is verified by spectrum experiment. Simulation and measurement results prove that the CS and FWHM of the MR spectrum are basically positively correlated with the concentration of MNPs and negatively correlated with the temperature. The research results can explain how MNPs play a role in MR by affecting the uniform magnetic field, which is of great significance in improving the temperature measurement accuracy of magnetic nanothermometers and the spatial resolution of magnetic particle imaging.
Keywords:  magnetic nanoparticle      field distribution      Monte Carlo method  
Received:  27 July 2022      Revised:  04 December 2022      Accepted manuscript online:  09 December 2022
PACS:  02.70.Uu (Applications of Monte Carlo methods)  
  07.55.Db (Generation of magnetic fields; magnets)  
Corresponding Authors:  Si-Lin Guo     E-mail:  silin7069@qq.com

Cite this article: 

Si-Lin Guo(郭斯琳), Wen-Tong Yi(易文通), and Zhuang-Zhuang Li(李壮壮) Effect of magnetic nanoparticles on magnetic field homogeneity 2023 Chin. Phys. B 32 050203

[1] Odeen H and Parker D L 2019 Prog. Nucl. Magn. Reson. Spectrosc. 110 34
[2] VilasBoas-Ribeiro I, Curto S, van Rhoon G C, Franckena M and Paulides M M 2021 Cancers (Basel) 13 3503
[3] Hankiewicz J H, Stoll J A, Stroud J, Davidson J, Livesey K L, Tvrdy K, Roshko A, Russek S E, Stupic K, Bilski P, Camley R E and Celinski Z J 2019 J. Magn. Magn. Mater. 469 550
[4] Hankiewicz J H, Celinski Z, Stupic K F, Anderson N R and Camley R E 2016 Nat. Commun. 7 12415
[5] Zhang Y, Guo S, Zhang P, Zhong J and Liu W 2020 Nanotechnology 31 345101
[6] Guo S, Liu J, Du Z and Liu W 2021 Rev. Sci. Instrum. 92 024901
[7] Rad A M, Arbab A S, Iskander A S, Jiang Q and Soltanian-Zadeh H 2007 J. Magn. Reson. Imaging 26 366
[8] Thorek D L, Chen A K, Czupryna J and Tsourkas A 2006 Ann. Biomed. Eng. 34 23
[9] Huang H S and Hainfeld J F 2013 Int. J. Nanomedicine 8 2521
[10] Hurwitz M and Stauffer P 2014 Semin. Oncol. 41 714
[11] James J R, Gao Y, Miller M A, Babsky A and Bansal N 2009 Magn. Reson. Med. 62 550
[12] Saritas E U, Goodwill P W, Croft L R, Konkle J J, Lu K, Zheng B and Conolly S M 2013 J. Magn. Reson. 229 116
[13] Chen L, Xie J, Wu H, Zang F, Ma M, Hua Z, Gu N and Zhang Y 2018 Colloids Surf. B Biointerfaces 161 339
[14] Rauwerdink A M, Hansen E W and Weaver J B 2009 Phys. Med. Biol. 54 L51
[15] Zhong J, Liu W, Du Z, Cesar de Morais P, Xiang Q and Xie Q 2012 Nanotechnology 23 075703
[16] Xu W, Liu W and Zhang P 2016 Rev. Sci. Instrum. 87 054902
[17] Zhong J, Schilling M and Ludwig F 2018 Measurement Science and Technology 29 115903
[18] Zhong J, Liu W, Kong L and Morais P C 2014 Sci. Rep. 4 6338
[19] Weaver J B, Rauwerdink A M and Hansen E W 2009 Med. Phys. 36 1822
[20] Brown R J S 1961 Phys. Rev. 121 1379
[21] Seleznyova K, Strugatsky M and Kliava J 2016 Eur. J. Phys. 37 025203
[22] Ando T, Hirota N and Wada H 2009 Sci. Technol. Adv. Mater. 10 014609
[23] Dirac P A M 1948 Phys. Rev. 74 817
[24] Ivanov A O and Kuznetsova O B 2001 Phys. Rev. E 64 041405
[25] Vuong Q L, Gillis P and Gossuin Y 2011 J. Magn. Reson. 212 139
[26] van der Waals J D 1979 Journal of Statistical Physics 20 200
[27] Satoh A, Chantrell R W, Kamiyama S I and Coverdale G N 1996 J. Colloid Interf. Sci. 178 620
[28] Chen Y H, Guo X R, Du X L and Guo G L 2002 Acta Phys. Chim. Sin. 18 710
[29] Keevil S F 2006 Phys. Med. Biol. 51 R579
[30] Hardy R C and Cottington R L 1949 Journal of Research of the National Bureau of Standards 42 573
[31] Cini R and Torrini M 1968 J. Chem. Phys. 49 2826
[1] Enhancing performance of GaN-based LDs by using GaN/InGaN asymmetric lower waveguide layers
Wen-Jie Wang(王文杰), Ming-Le Liao(廖明乐), Jun Yuan(袁浚), Si-Yuan Luo(罗思源), and Feng Huang(黄锋). Chin. Phys. B, 2022, 31(7): 074206.
[2] Electron beam modeling and analyses of the electric field distribution and space charge effect
Yueling Jiang(蒋越凌) and Quanlin Dong(董全林). Chin. Phys. B, 2022, 31(5): 054103.
[3] Solving quantum rotor model with different Monte Carlo techniques
Weilun Jiang(姜伟伦), Gaopei Pan(潘高培), Yuzhi Liu(刘毓智), and Zi-Yang Meng(孟子杨). Chin. Phys. B, 2022, 31(4): 040504.
[4] Investigation of transport properties of perovskite single crystals by pulsed and DC bias transient current technique
Juan Qin(秦娟), Gang Cao(曹港), Run Xu(徐闰), Jing Lin(林婧), Hua Meng(孟华), Wen-Zhen Wang(王文贞), Zi-Ye Hong(洪子叶), Jian-Cong Cai(蔡健聪), and Dong-Mei Li(李冬梅). Chin. Phys. B, 2022, 31(11): 117102.
[5] Coupling characteristics of laterally coupled gratings with slots
Kun Tian(田锟), Yonggang Zou(邹永刚), Linlin Shi(石琳琳), He Zhang(张贺), Yingtian Xu(徐英添), Jie Fan(范杰), Hui Tang(唐慧), and Xiaohui Ma(马晓辉). Chin. Phys. B, 2022, 31(11): 114208.
[6] Sensitivity of heavy-ion-induced single event burnout in SiC MOSFET
Hong Zhang(张鸿), Hong-Xia Guo(郭红霞), Feng-Qi Zhang(张凤祁), Xiao-Yu Pan(潘霄宇), Yi-Tian Liu(柳奕天), Zhao-Qiao Gu(顾朝桥), An-An Ju(琚安安), and Xiao-Ping Ouyang(欧阳晓平). Chin. Phys. B, 2022, 31(1): 018501.
[7] Effective model for rare-earth Kitaev materials and its classical Monte Carlo simulation
Mengjie Sun(孙梦杰), Huihang Lin(林慧航), Zheng Zhang(张政), Yanzhen Cai(蔡焱桢), Wei Ren(任玮), Jing Kang(康靖), Jianting Ji(籍建葶), Feng Jin(金峰), Xiaoqun Wang(王孝群), Rong Yu(俞榕), Qingming Zhang(张清明), and Zhengxin Liu(刘正鑫). Chin. Phys. B, 2021, 30(8): 087503.
[8] Multiple scattering and modeling of laser in fog
Ji-Yu Xue(薛积禹), Yun-Hua Cao(曹运华), Zhen-Sen Wu(吴振森), Jie Chen(陈杰), Yan-Hui Li(李艳辉), Geng Zhang(张耿), Kai Yang(杨凯), and Ruo-Ting Gao(高若婷). Chin. Phys. B, 2021, 30(6): 064206.
[9] Enhanced hyperthermia performance in hard-soft magnetic mixed Zn0.5CoxFe2.5-xO4/SiO2 composite magnetic nanoparticles
Xiang Yu(俞翔, Li-Chen Wang(王利晨, Zheng-Rui Li(李峥睿, Yan Mi(米岩), Di-An Wu(吴迪安), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(3): 036201.
[10] Effects of dipolar interactions on the magnetic hyperthermia of Zn0.3Fe2.7O 4 nanoparticles with different sizes
Xiang Yu(俞翔), Yan Mi(米岩), Li-Chen Wang(王利晨), Zheng-Rui Li(李峥睿), Di-An Wu(吴迪安), Ruo-Shui Liu(刘若水), and Shu-Li He(贺淑莉). Chin. Phys. B, 2021, 30(1): 017503.
[11] Functionalized magnetic nanoparticles for drug delivery in tumor therapy
Ruo-Nan Li(李若男), Xian-Hong Da(达先鸿), Xiang Li (李翔), Yun-Shu Lu(陆云姝), Fen-Fen Gu(顾芬芬), and Yan Liu(刘艳). Chin. Phys. B, 2021, 30(1): 017502.
[12] Second harmonic magnetoacoustic responses of magnetic nanoparticles in magnetoacoustic tomography with magnetic induction
Gepu Guo(郭各朴), Ya Gao(高雅), Yuzhi Li(李禹志), Qingyu Ma(马青玉), Juan Tu(屠娟), Dong Zhang(章东). Chin. Phys. B, 2020, 29(3): 034302.
[13] Improved dielectric and electro-optical parameters of nematic liquid crystal doped with magnetic nanoparticles
Geeta Yadav, Govind Pathak, Kaushlendra Agrahari, Mahendra Kumar, Mohd Sajid Khan, V S Chandel, Rajiv Manohar. Chin. Phys. B, 2019, 28(3): 034209.
[14] Theoretical analytic model for RESURF AlGaN/GaN HEMTs
Hao Wu(吴浩), Bao-Xing Duan(段宝兴), Luo-Yun Yang(杨珞云), Yin-Tang Yang(杨银堂). Chin. Phys. B, 2019, 28(2): 027302.
[15] Flexible rGO/Fe3O4 NPs/polyurethane film with excellent electromagnetic properties
Wei-Qi Yu(余维琪), Yi-Chen Qiu(邱怡宸), Hong-Jun Xiao(肖红君), Hai-Tao Yang(杨海涛), Ge-Ming Wang(王戈明). Chin. Phys. B, 2019, 28(10): 108103.
No Suggested Reading articles found!