INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Analysis of cut vertex in the control of complex networks |
Jie Zhou(周洁)1, Cheng Yuan(袁诚)1, Zu-Yu Qian(钱祖燏)1, Bing-Hong Wang(汪秉宏)2, and Sen Nie(聂森)1,† |
1 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China; 2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China |
|
|
Abstract The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes. However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.
|
Received: 15 April 2022
Revised: 10 September 2022
Accepted manuscript online: 11 November 2022
|
PACS:
|
89.75.Fb
|
(Structures and organization in complex systems)
|
|
89.75.-k
|
(Complex systems)
|
|
02.30.Yy
|
(Control theory)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61763013), the Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL212008), the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No. 2017KY37), and the Key Research and Development Project of Jiangxi Province of China (Grant No. 20202BBEL53018). |
Corresponding Authors:
Sen Nie
E-mail: niesen@ecjtu.edu.cn
|
Cite this article:
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森) Analysis of cut vertex in the control of complex networks 2023 Chin. Phys. B 32 028902
|
[1] Barabási A L and Oltvai Z N 2004 Nat. Rev. Genet. 5 101 [2] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186 [3] Yan G, Vértes P E, Towlson E K, Chew Y L, Walker D S, Schafer W R and Barabási A L 2017 Nature 550 519 [4] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113 [5] Wang X W, Wang Z, Nie S, Jiang L L and Wang B H 2015 Appl. Math. Comput. 250 848 [6] Newman M E J 2003 SIAM Rev. 45 167 [7] Perc M, Miksić N G, Slavinec M and Stožer A 2020 Front Phys-Lausanne 8 127 [8] Guimerá R, Mossa S, Turtschi A and Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794 [9] Wang X, Jiang R, Li L, Lin Y L, Zheng X H and Wang F Y 2017 IEEE T. Intell. Transp. 19 910 [10] Xu J Q, Huang H N, Li L and Yue X Q 2020 Journal of East China Jiaotong University 37 52 [11] Mantegna R N and Stanley H E 2004 An Introduction to Econophysics Correlations and Complexity in Finance (Cambridge: Cambridge University Press) p. 5 [12] Song D M, Tumminello M, Zhou W X and Mantegna R N 2011 Phys. Rev. E 84 026108 [13] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47 [14] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175 [15] Strogatz S H 2001 Nature 410 268 [16] Martinčić-Ipšić S, Močibob E and Perc M 2017 PloS One 12 e0181079 [17] Wang W X and Chen G R 2008 Phys. Rev. E 77 026101 [18] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102 [19] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167 [20] Wang X F and Chen G R 2002 Int. J. Bifurcat. Chaos 12 187 [21] Xiang L Y, Chen F, Ren W and Chen G R 2019 IEEE Circ. Syst. Mag. 19 8 [22] Yuan Z Z, Zhao C, Di Z R, Wang W X and Lai Y C 2013 Nat. Commun. 4 1 [23] Jia T, Liu Y Y, Csóka E, Pósfai M, Slotine J J and Barabási A L 2013 Nat. Commun. 4 1 [24] Nie S, Wang X W, Zhang H F, Li Q L and Wang B H 2014 PloS One 9 e89066 [25] Wang L Z, Chen Y Z, Wang W X and Lai Y C 2017 Sci. Rep. 7 1 [26] Yuan Z Z, Zhao C, Wang W X, Di Z R and Lai Y C 2014 New J. Phys. 16 103036 [27] Jia T and Barabási A L 2013 Sci. Rep. 3 1 [28] Gao J X, Liu Y Y, D'souza R M and Barabási A L 2014 Nat. Commun. 5 1 [29] Wang Y Q, Lu J Q, Liang J L, Cao J D and Perc M 2018 IEEE T. Circuits-II 66 432 [30] Yan G, Ren J, Lai Y C, Lai C H and Li B W 2012 Phys. Rev. Lett. 108 218703 [31] Yan G, Tsekenis G, Barzel B, Slotine J J, Liu Y Y and Barabási A L 2015 Nat. Phys. 11 779 [32] Nie S, Stanley H E, Chen S M, Wang B H and Wang X W 2018 Sci. Rep. 8 1 [33] Cornelius S P, Kath W L and Motter A E 2013 Nat. Commun. 4 1 [34] Sun J and Motter A E 2013 Phys. Rev. Lett. 110 208701 [35] Nie S, Stanley H E, Chen S M, Wang B H and Wang X W 2020 EPL-Europhys. Lett. 130 58002 [36] Wang X and Xiang L Y 2021 Complexity 2021 6657307 [37] Lindmark G and Altafini C 2018 Sci. Rep. 8 1 [38] Chen Y Z, Wang L Z, Wang W X and Lai Y C 2016 Roy. Soc. Open Sci. 3 160064 [39] Cowan N J, Chastain E J, Vilhena D A, Freudenberg J S and Bergstrom C T 2012 PloS One 7 e38398 [40] Wang W X, Ni X, Lai Y C and Grebogi C 2012 Phys. Rev. E 85 026115 [41] Zañudo J G T, Yang G and Albert R 2017 Proc. Natl. Acad. Sci. USA 114 7234 [42] Wang L Z, Su R Q, Huang Z G, Wang X, Wang W X, Grebogi C and Lai Y C 2016 Nat. Commun. 7 1 [43] Bollobás B 2013 Modern Graph Theory (Springer Science & Business Media) p. 67 [44] Bondy J A and Murty U S R 1976 Graph Theory with Applications (London: Macmillan) p. 31 [45] Tian L, Bashan A, Shi D N and Liu Y Y 2017 Nat. Commun. 8 1 [46] Wang L F, Zhao Y K, Duan L and Yu M Z 2019 Control and Decision 34 2310 [47] Hassan Y F and Gebreel F M 2012 Int. J. Intell. Inf. Process. 3 87 [48] Conti E, Cao S and Thomas A J 2013 arXiv:1301.2223 [physics.soc-ph] [49] Rugh W J 1996 Linear System Theory (Prentice-Hall, Inc.) p. 37 [50] Callier F M and Desoer C A 2012 Linear System Theory (Springer Science & Business Media) p. 48 [51] Hautus M L J 1969 Akad. Wetensch. Proc. Ser. A 72 443 [52] Tarjan R E and Vishkin U 1985 SIAM J. Comput. 14 862 [53] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17 [54] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701 [55] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102 [56] Albert R, Jeong H and Barabási A L 2000 Nature 406 378 [57] Beveridge A and Shan J 2016 Math Horizons 23 18 [58] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E and Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|