Please wait a minute...
Chin. Phys. B, 2023, Vol. 32(2): 028902    DOI: 10.1088/1674-1056/aca208
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Analysis of cut vertex in the control of complex networks

Jie Zhou(周洁)1, Cheng Yuan(袁诚)1, Zu-Yu Qian(钱祖燏)1, Bing-Hong Wang(汪秉宏)2, and Sen Nie(聂森)1,†
1 School of Electrical and Automation Engineering, East China Jiaotong University, Nanchang 330013, China;
2 Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  The control of complex networks is affected by their structural characteristic. As a type of key nodes in a network structure, cut vertexes are essential for network connectivity because their removal will disconnect the network. Despite their fundamental importance, the influence of the cut vertexes on network control is still uncertain. Here, we reveal the relationship between the cut vertexes and the driver nodes, and find that the driver nodes tend to avoid the cut vertexes. However, driving cut vertexes reduce the energy required for controlling complex networks, since cut vertexes are located near the middle of the control chains. By employing three different node failure strategies, we investigate the impact of cut vertexes failure on the energy required. The results show that cut vertex failures markedly increase the control energy because the cut vertexes are larger-degree nodes. Our results deepen the understanding of the structural characteristic in network control.
Keywords:  cut vertex      controllability      control energy      structural characteristic      complex networks  
Received:  15 April 2022      Revised:  10 September 2022      Accepted manuscript online:  11 November 2022
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.-k (Complex systems)  
  02.30.Yy (Control theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 61763013), the Natural Science Foundation of Jiangxi Province of China (Grant No. 20202BABL212008), the Jiangxi Provincial Postdoctoral Preferred Project of China (Grant No. 2017KY37), and the Key Research and Development Project of Jiangxi Province of China (Grant No. 20202BBEL53018).
Corresponding Authors:  Sen Nie     E-mail:  niesen@ecjtu.edu.cn

Cite this article: 

Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森) Analysis of cut vertex in the control of complex networks 2023 Chin. Phys. B 32 028902

[1] Barabási A L and Oltvai Z N 2004 Nat. Rev. Genet. 5 101
[2] Bullmore E and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[3] Yan G, Vértes P E, Towlson E K, Chew Y L, Walker D S, Schafer W R and Barabási A L 2017 Nature 550 519
[4] Newman M E J and Girvan M 2004 Phys. Rev. E 69 026113
[5] Wang X W, Wang Z, Nie S, Jiang L L and Wang B H 2015 Appl. Math. Comput. 250 848
[6] Newman M E J 2003 SIAM Rev. 45 167
[7] Perc M, Miksić N G, Slavinec M and Stožer A 2020 Front Phys-Lausanne 8 127
[8] Guimerá R, Mossa S, Turtschi A and Amaral L A N 2005 Proc. Natl. Acad. Sci. USA 102 7794
[9] Wang X, Jiang R, Li L, Lin Y L, Zheng X H and Wang F Y 2017 IEEE T. Intell. Transp. 19 910
[10] Xu J Q, Huang H N, Li L and Yue X Q 2020 Journal of East China Jiaotong University 37 52
[11] Mantegna R N and Stanley H E 2004 An Introduction to Econophysics Correlations and Complexity in Finance (Cambridge: Cambridge University Press) p. 5
[12] Song D M, Tumminello M, Zhou W X and Mantegna R N 2011 Phys. Rev. E 84 026108
[13] Albert R and Barabási A L 2002 Rev. Mod. Phys. 74 47
[14] Boccaletti S, Latora V, Moreno Y, Chavez M and Hwang D U 2006 Phys. Rep. 424 175
[15] Strogatz S H 2001 Nature 410 268
[16] Martinčić-Ipšić S, Močibob E and Perc M 2017 PloS One 12 e0181079
[17] Wang W X and Chen G R 2008 Phys. Rev. E 77 026101
[18] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[19] Liu Y Y, Slotine J J and Barabási A L 2011 Nature 473 167
[20] Wang X F and Chen G R 2002 Int. J. Bifurcat. Chaos 12 187
[21] Xiang L Y, Chen F, Ren W and Chen G R 2019 IEEE Circ. Syst. Mag. 19 8
[22] Yuan Z Z, Zhao C, Di Z R, Wang W X and Lai Y C 2013 Nat. Commun. 4 1
[23] Jia T, Liu Y Y, Csóka E, Pósfai M, Slotine J J and Barabási A L 2013 Nat. Commun. 4 1
[24] Nie S, Wang X W, Zhang H F, Li Q L and Wang B H 2014 PloS One 9 e89066
[25] Wang L Z, Chen Y Z, Wang W X and Lai Y C 2017 Sci. Rep. 7 1
[26] Yuan Z Z, Zhao C, Wang W X, Di Z R and Lai Y C 2014 New J. Phys. 16 103036
[27] Jia T and Barabási A L 2013 Sci. Rep. 3 1
[28] Gao J X, Liu Y Y, D'souza R M and Barabási A L 2014 Nat. Commun. 5 1
[29] Wang Y Q, Lu J Q, Liang J L, Cao J D and Perc M 2018 IEEE T. Circuits-II 66 432
[30] Yan G, Ren J, Lai Y C, Lai C H and Li B W 2012 Phys. Rev. Lett. 108 218703
[31] Yan G, Tsekenis G, Barzel B, Slotine J J, Liu Y Y and Barabási A L 2015 Nat. Phys. 11 779
[32] Nie S, Stanley H E, Chen S M, Wang B H and Wang X W 2018 Sci. Rep. 8 1
[33] Cornelius S P, Kath W L and Motter A E 2013 Nat. Commun. 4 1
[34] Sun J and Motter A E 2013 Phys. Rev. Lett. 110 208701
[35] Nie S, Stanley H E, Chen S M, Wang B H and Wang X W 2020 EPL-Europhys. Lett. 130 58002
[36] Wang X and Xiang L Y 2021 Complexity 2021 6657307
[37] Lindmark G and Altafini C 2018 Sci. Rep. 8 1
[38] Chen Y Z, Wang L Z, Wang W X and Lai Y C 2016 Roy. Soc. Open Sci. 3 160064
[39] Cowan N J, Chastain E J, Vilhena D A, Freudenberg J S and Bergstrom C T 2012 PloS One 7 e38398
[40] Wang W X, Ni X, Lai Y C and Grebogi C 2012 Phys. Rev. E 85 026115
[41] Zañudo J G T, Yang G and Albert R 2017 Proc. Natl. Acad. Sci. USA 114 7234
[42] Wang L Z, Su R Q, Huang Z G, Wang X, Wang W X, Grebogi C and Lai Y C 2016 Nat. Commun. 7 1
[43] Bollobás B 2013 Modern Graph Theory (Springer Science & Business Media) p. 67
[44] Bondy J A and Murty U S R 1976 Graph Theory with Applications (London: Macmillan) p. 31
[45] Tian L, Bashan A, Shi D N and Liu Y Y 2017 Nat. Commun. 8 1
[46] Wang L F, Zhao Y K, Duan L and Yu M Z 2019 Control and Decision 34 2310
[47] Hassan Y F and Gebreel F M 2012 Int. J. Intell. Inf. Process. 3 87
[48] Conti E, Cao S and Thomas A J 2013 arXiv:1301.2223 [physics.soc-ph]
[49] Rugh W J 1996 Linear System Theory (Prentice-Hall, Inc.) p. 37
[50] Callier F M and Desoer C A 2012 Linear System Theory (Springer Science & Business Media) p. 48
[51] Hautus M L J 1969 Akad. Wetensch. Proc. Ser. A 72 443
[52] Tarjan R E and Vishkin U 1985 SIAM J. Comput. 14 862
[53] Erdös P and Rényi A 1960 Publ. Math. Inst. Hung. Acad. Sci. 5 17
[54] Goh K I, Kahng B and Kim D 2001 Phys. Rev. Lett. 87 278701
[55] Motter A E and Lai Y C 2002 Phys. Rev. E 66 065102
[56] Albert R, Jeong H and Barabási A L 2000 Nature 406 378
[57] Beveridge A and Shan J 2016 Math Horizons 23 18
[58] Lusseau D, Schneider K, Boisseau O J, Haase P, Slooten E and Dawson S M 2003 Behav. Ecol. Sociobiol. 54 396
[1] Vertex centrality of complex networks based on joint nonnegative matrix factorization and graph embedding
Pengli Lu(卢鹏丽) and Wei Chen(陈玮). Chin. Phys. B, 2023, 32(1): 018903.
[2] Characteristics of vapor based on complex networks in China
Ai-Xia Feng(冯爱霞), Qi-Guang Wang(王启光), Shi-Xuan Zhang(张世轩), Takeshi Enomoto(榎本刚), Zhi-Qiang Gong(龚志强), Ying-Ying Hu(胡莹莹), and Guo-Lin Feng(封国林). Chin. Phys. B, 2022, 31(4): 049201.
[3] Robust H state estimation for a class of complex networks with dynamic event-triggered scheme against hybrid attacks
Yahan Deng(邓雅瀚), Zhongkai Mo(莫中凯), and Hongqian Lu(陆宏谦). Chin. Phys. B, 2022, 31(2): 020503.
[4] Finite-time synchronization of uncertain fractional-order multi-weighted complex networks with external disturbances via adaptive quantized control
Hongwei Zhang(张红伟), Ran Cheng(程然), and Dawei Ding(丁大为). Chin. Phys. B, 2022, 31(10): 100504.
[5] LCH: A local clustering H-index centrality measure for identifying and ranking influential nodes in complex networks
Gui-Qiong Xu(徐桂琼), Lei Meng(孟蕾), Deng-Qin Tu(涂登琴), and Ping-Le Yang(杨平乐). Chin. Phys. B, 2021, 30(8): 088901.
[6] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[7] Exploring individuals' effective preventive measures against epidemics through reinforcement learning
Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni (倪顺江), and Shi-Fei Shen(申世飞). Chin. Phys. B, 2021, 30(4): 048901.
[8] Influential nodes identification in complex networks based on global and local information
Yuan-Zhi Yang(杨远志), Min Hu(胡敏), Tai-Yu Huang(黄泰愚). Chin. Phys. B, 2020, 29(8): 088903.
[9] Identifying influential spreaders in complex networks based on entropy weight method and gravity law
Xiao-Li Yan(闫小丽), Ya-Peng Cui(崔亚鹏), Shun-Jiang Ni(倪顺江). Chin. Phys. B, 2020, 29(4): 048902.
[10] Modeling and analysis of the ocean dynamic with Gaussian complex network
Xin Sun(孙鑫), Yongbo Yu(于勇波), Yuting Yang(杨玉婷), Junyu Dong(董军宇)†, Christian B\"ohm, and Xueen Chen(陈学恩). Chin. Phys. B, 2020, 29(10): 108901.
[11] Effect of degree correlation on edge controllability of real networks
Shu-Lin Liu(刘树林) and Shao-Peng Pang(庞少鹏)†. Chin. Phys. B, 2020, 29(10): 100202.
[12] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[13] Theoretical analyses of stock correlations affected by subprime crisis and total assets: Network properties and corresponding physical mechanisms
Shi-Zhao Zhu(朱世钊), Yu-Qing Wang(王玉青), Bing-Hong Wang(汪秉宏). Chin. Phys. B, 2019, 28(10): 108901.
[14] Coordinated chaos control of urban expressway based on synchronization of complex networks
Ming-bao Pang(庞明宝), Yu-man Huang(黄玉满). Chin. Phys. B, 2018, 27(11): 118902.
[15] Controllability of heterogeneous interdependent group systems under undirected and directed topology
Hui-Qin Pei(裴惠琴), Shi-Ming Chen(陈世明). Chin. Phys. B, 2018, 27(10): 108901.
No Suggested Reading articles found!