CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES |
Prev
Next
|
|
|
Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals |
Liu Xiao-Juan (刘晓娟), Zhang Xiao-Song (张晓松), Li Lan (李岚), Wang Xue-Liang (王雪亮), Yuan Lin-Lin (苑琳琳) |
Institute of Material Physics, Tianjin University of Technology, Tianjin 300384, China |
|
|
Abstract A series of Zn-Cu-In-S nanocrystals (ZCIS NCs) are prepared and the optical properties of the ZCIS NCs are tuned by adjusting the reaction time. It is interesting to observe that the temperature-dependent photoluminescence (PL) spectra of the ZCIS NCs show a redshift with decreasing intensity at low temperature (50-280 K) and a blueshift at high temperature (318-403 K). The blueshift can be explained by the thermally active phonon-assisted tunneling from the excited states of the low-energy emission band to the excited states of the high-energy emission band.
|
Received: 21 March 2014
Revised: 09 May 2014
Accepted manuscript online:
|
PACS:
|
78.67.Bf
|
(Nanocrystals, nanoparticles, and nanoclusters)
|
|
78.55.-m
|
(Photoluminescence, properties and materials)
|
|
78.40.-q
|
(Absorption and reflection spectra: visible and ultraviolet)
|
|
78.40.Fy
|
(Semiconductors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grand Nos. 60907021, 60977035, and 60877029) and the Natural Science Foundation of Tianjin, China (Grant No. 11JCYBJC00300). |
Corresponding Authors:
Zhang Xiao-Song
E-mail: zhangxiaosong022@126.com
|
Cite this article:
Liu Xiao-Juan (刘晓娟), Zhang Xiao-Song (张晓松), Li Lan (李岚), Wang Xue-Liang (王雪亮), Yuan Lin-Lin (苑琳琳) Fabrication and temperature-dependent photoluminescence spectra of Zn-Cu-In-S quaternary nanocrystals 2014 Chin. Phys. B 23 117804
|
[1] |
Schlamp M, Peng X G and Alivisatos A 1997 J. App. Phys. 82 5837
|
[2] |
Hernández-Borja, Vorobiev Y V and Ramírez-Bon R 2011 Sol. Energ. Mat. Sol. C 95 1882
|
[3] |
Li F, Cho S H, Son D I, Park K H and Kim T W 2008 Appl. Phys. Lett. 92 102110
|
[4] |
Kannan V and Rhee J K 2012 Appl. Phys. A 108 59
|
[5] |
Gardner J S, Shurdha E, Wang C, Lau L D, Rodriguez R G and Pak J J 2007 J. Nanopart. Res. 10 633
|
[6] |
Allen P M and Bawendi M G 2008 J. Am. Chem. Soc. 130 9240
|
[7] |
Bensebaa F, Durand C, Aouadou A, Scoles L, Du X Wang D and Page Y 2009 J. Nanopart. Res. 12 1897
|
[8] |
Pein A, Baghbanzadeh M, Rath T, Haas W, Maier E, Amenitsch H, Hofer F, Kappe C O and Trimmel G 2006 Chem. Mater. 18 3330
|
[9] |
Dai M, Ogawa S, Kameyama T, Okazaki K I, Kudo A, Kuwabata S, Tsuboi Y and Torimoto T 2012 J. Mater. Chem. 22 12851
|
[10] |
Zhong H Z, Bai Z L and Zou B S 2012 J. Phys. Chem. Lett. 3 3167
|
[11] |
Huang S Y, Zhang L D, Li G H, Dai Z H, Zhu X G, Qu F Q, Fu S Q, Zhong Y R and Miao Y 2002 Chin. Phys. Lett. 19 1199
|
[12] |
Zhang W J and Zhong X H 2011 Inorg. Chem. 50 4065
|
[13] |
Xiang W D, Yang H L, Liang X J, Zhong J S, Wang J, Luo L and Xie C P 2013 J. Mater. Chem. C 1 2014
|
[14] |
Liu Y F, Huang F Q, Xie Y, Cui H L, Zhao W, Yang C Y and Dai N 2013 J. Phys. Chem. C 117 10296
|
[15] |
Nakamura H, Kato W, Uehara M, Nose K, Omata T, Otsuka-Yao-Matsuo S, Miyazaki M and Maeda H 2006 Chem. Mater. 18 3330
|
[16] |
Zhang J, Xie R G and Yang W S 2011 Chem. Mater. 23 3357
|
[17] |
Zhang Y, Xie C, Su H P, Liu J, Pickering S, Wang Y Q, Yu W W, Wang J K, Wang Y D, Hahm J I, Dellas N, Mohney S E and Xu J 2011 Nano Lett. 11 329
|
[18] |
Liu W Y, Zhang Y, Zhai W W, Wang Y H, Zhang T Q, Gu P F, Chu H R, Zhang H Z, Cui T and Wang Y D 2013 J. Phys. Chem. C 117 19288
|
[19] |
Kim J S, Park Y H, Kim S M, Choi J C and Park H L 2005 Solid State Commun. 133 445
|
[20] |
Liu B, Shi C S, Zhang Q L and Chen Y H 2002 J. Alloy. Compd. 333 215
|
[21] |
Zhang X, Liu Y, Zhi Z, Zhang J, Lu Y, Shen D, Xu W, Fan X and Kong X 2002 J. Lumin. 99 149
|
[22] |
Xie R J, Hirosaki N, Kimura N, Sakuma K and Mitomo M 2007 Appl. Phys. Lett. 90 191101
|
[23] |
Pejchal J, Nikl M, Mihokova, Novoselov E A, Yoshikawa A and Williams R T 2009 J. Lumin. 129 1857
|
[24] |
Brus L E 1983 J. Chem. Phys. 79 5566
|
[25] |
Brus L E 1984 J. Chem. Phys. 80 4403
|
[26] |
Koc K, Tepehan F Z and Tepehan G G 2011 Chalcogenide. Lett. 8 239
|
[27] |
Guo W S, Chen N, Dong C H, Tu Y, Chang J and Zhang B B 2013 RSC. Adv. 3 9470
|
[28] |
Wan H K, Ho L M, Whan K T, Yeol Y D and Woo K S 2011 Appl. Phys. Lett. 99 19330.
|
[29] |
León-Luis S F, Rodríguez-Mendza U R, Lalla E and Lavín V 2011 Sensor. Actuat. B Chem. 158 208
|
[30] |
Zeng H B, Li Z G, Cai W P and Liu P S 2007 J. Appl. Phys. 102 104307
|
[31] |
Li Q, Xu S J, Xie M H and Tong S Y 2005 J. Phys.: Condens. Matter 17 4853
|
[32] |
Li Q, Xu S J, Cheng W C, Xie M H, Tong S Y, Che C M and Yang H 2001 Appl. Phys. Lett. 79 1810
|
[33] |
Xu S J, Li Q, Dong J R and Chua S 2004 Appl. Phys. Lett. 84 2280
|
[34] |
Varshni Y P 1967 Physics 34 149
|
[35] |
Botha J and Leitch A W R 2000 J. Electron. Mater. 29 1362
|
[36] |
Ramvall P, Tanaka S, Nomura S, Riblet P and Aoyagi Y 1999 Appl. Phys. Lett. 75 1935
|
[37] |
Wan J, Brebner J, Leonelli R, Zhao G and Graham J 1993 Phys. Rev. B 48 5197
|
[38] |
Xu S Y, Zhang X S, Zhou Y L, X Q and Li Lan 2011 Chin. Phys. Lett. 20 037804
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|