1 Department of Astronomy, Beijing Normal University, Beijing 100875, China; 2 CAS Key Laboratory of Geospace Environment, University of Science&Technology of China, Hefei 230026, China
Abstract Relativistic magnetic reconnection (MR) driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional (3D) kinetic relativistic particle-in-cell (PIC) code. We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment. As the separation distance becomes larger, the magnetization parameter σ becomes smaller. The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance. Moreover, the collisionless shocks' contribution to energetic electrons is close to the magnetic reconnection contribution with σ decreasing, which results in a steeper electron energy spectrum. Basing on the 3D outflow momentum configuration, the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameter σ is very high in the 3D outflow area.
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018, 12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.
Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇) Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma 2022 Chin. Phys. B 31 065203
[1] Ghisellini G, Celotti A and Lazzati D 2000 Mon. Not. R. Astron. Soc.313 L1 [2] Lesch H and Birk G T 1998 Astrophys. J.499 167 [3] Reames D V 2013 Space. Sci. Rev.175 53 [4] Berezhko E G and Ksenofontov L 1999 J. Exp. Theor. Phys.89 391 [5] Meli A and Quenby J J 2003 Astropart. Phys.19 649 [6] Kinney R and McWilliams J C 1995 Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence462 289 [7] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Landen O L, Knauer J P and Smalyuk V A 2007 Phys. Rev. Lett.99 055001 [8] Palmer C A J, Campbell P T, Ma Y, Antonelli L, Bott A F A, Gregori G, Halliday J, Katzir Y, Kordell P, Krushelnick K, Lebedev S V, Montgomery E, Notley M, Carroll D C, Ridgers C P, Schekochihin A A, Streeter M J V, Thomas A G R, Tubman E R, Woolsey N and Willingale L 2019 Phys. Plasmas26 083109 [9] Nilson P M, Willingale L, Kaluza M C, Kamperidis, C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E and Krushelnick K 2006 Phys. Rev. Lett.97 255001 [10] Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M and Zhang J 2012 Phys. Rev. Lett.108 215001 [11] Zhong J, Li Y, Wang X, Wang J, Dong Q, Xiao C, Wang S, Liu X, Zhang L, An L, Wang F, Zhu J, Gu Y, He X, Zhao G and Zhang J 2010 Nat. Phys.6 984 [12] Kuramitsu Y, Chu H H, Hau L N, Chen S H, Liu Y L, Hsieh C Y, Sakawa Y, Hideaki T and Wang J 2015 High. Energy. Density. Phys.17 198 [13] Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G and Zhang J 2016 Astrophys. J. Suppl. Ser.225 30 [14] Fox W, Park J, Deng W, Fiksel G, Spitkovsky A and Bhattacharjee A 2017 Phys. Plasmas24 092901 [15] Raymond A E, Dong C F, McKelvey A, Zulick C, Alexander N, Bhattacharjee A, Campbell P T, Chen H, Chvykov V, Del Rio E, Fitzsimmons P, Fox W, Hou B, Maksimchuk A, Mileham C, Nees J, Nilson P M, Stoeckl C, Thomas A G R, Wei M S, Yanovsky V, Krushelnick K and Willingale L 2018 Phys. Rev. E98 043207 [16] Yi L, Shen B, Pukhov A and Fülöp T 2018 Nat. Commun.9 1601 [17] Law K F F, Abe Y, Morace A, Arikawa Y, Sakata S, Lee S, Matsuo K, Morita H, Ochiai Y, Liu C, Yogo A, Okamoto K, Golovin D, Ehret M, Ozaki T, Nakai M, Sentoku Y, Santos J J, d'Humiéres, E, Korneev P and Fujioka S 2020 Phys. Rev. E102 033202 [18] Fox W, Matteucci J, Moissard C, Schaeffer, D B, Bhattacharjee A, Germaschewski K and Hu S X 2018 Phys. Plasmas25 102106 [19] Fiuza F, Swadling G F, Grassi A, Rinderknecht H G, Higginson D P, Ryutov D D, Bruulsema C, Drake R P, Funk S, Glenzer S, Gregori G, Li C K, Pollock B B, Remington B A, Ross J S, Rozmus W, Sakawa Y, Spitkovsky A, Wilks S and Park H S 2020 Nat. Phys.16 916 [20] Lu S, Lu Q, Huang C, Dong Q, Zhu J, Sheng, Z, Wang S and Zhang J 2014 New J. Phys.16 083021 [21] Lu S, Lu Q, Guo F, Sheng Z, Wang H and Wang S 2016 New J. Phys.18 013051 [22] Qiao B, Xu Z, Yao W P, Chang H X and He X T 2017 Plasma Phys. Control Fusion59 064002 [23] Gu Y J, Pegoraro F, Sasorov P V, Golovin D, Yogo A, Korn G and Bulanov S V 2019 Sci. Rep.9 19462 [24] Ping Y L, Zhong J Y, Sheng Z M, Wang X G, Liu B, Li Y T, Yan X Q, He X T, Zhang J and Zhao G 2014 Phys. Rev. E89 031101 [25] Ping Y L, Zhong J Y, Wang X G, Sheng Z M and Zhao G 2017 Astrophys. J.849 137 [26] Bessho N and Bhattacharjee A 2012 Astrophys. J.750 129 [27] Guo F, Li X, Li H, Daughton W, Zhang B, Lloyd-Ronning N, Liu Y H, Zhang H and Deng W 2016 Astrophys. J.818 L9 [28] Sironi L and Spitkovsky A 2014 Astrophys. J.783 L21 [29] Hoshino M 2005 J. Geophys. Res. Space. Phys.110 A10215 [30] Zenitani S and Hoshino M 2007 Astrophys. J.670 702 [31] Dahlin J T 2020 Phys. Plasmas27 100601 [32] Lu Y, Guo F, Kilian P, Li H, Huang C and Liang E 2021 Astrophys. J.908 147 [33] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett.100 135003 [34] Liu B, Wang H Y, Liu J, Fu L B, Xu Y J, Yan X Q and He X T 2013 Phys. Rev. Lett.110 045002 [35] Ping Y L, Zhong J Y, Wang X G, Zhao G, Li Y T and He X T 2021 Plasma Phys. Controlled Fusion63 085012 [36] Yao W, Fazzini A, Chen, S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d'Humiéres E and Fuchs J 2020 Nat. Phys.17 1177 [37] Fiuza F, Fonseca R A, Tonge J, Mori W B and Silva L O 2012 Phys. Rev. Lett.108 235004 [38] Spitkovsky A 2008 Astrophys. J.682 L5 [39] Sironi L and Spitkovsky A 2011 Astrophys. J.726 75 [40] Celotti A and Ghisellini G 2008 Mon. Not. R. Astron. Soc.385 283 [41] Zhang B and Yan H 2011 Astrophys. J.726 90 [42] Zhang J, Liang E W, Sun, X N, Zhang B, Lu Y and Zhang S N 2013 Astrophys. J.774 L5 [43] Ji H and Daughton W 2011 Phys. Plasmas18 111207 [44] Uzdensky D A 2011 Space Sci. Rev.160 45
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.