Please wait a minute...
Chin. Phys. B, 2022, Vol. 31(6): 065203    DOI: 10.1088/1674-1056/ac3397
PHYSICS OF GASES, PLASMAS, AND ELECTRIC DISCHARGES Prev   Next  

Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma

Qian Zhang(张茜)1,2, Yongli Ping(平永利)1,2,†, Weiming An(安维明)1, Wei Sun(孙伟)1, and Jiayong Zhong(仲佳勇)1,‡
1 Department of Astronomy, Beijing Normal University, Beijing 100875, China;
2 CAS Key Laboratory of Geospace Environment, University of Science&Technology of China, Hefei 230026, China
Abstract  Relativistic magnetic reconnection (MR) driven by two ultra-intense lasers with different spot separation distances is simulated by a three-dimensional (3D) kinetic relativistic particle-in-cell (PIC) code. We find that changing the separation distance between two laser spots can lead to different magnetization parameters of the laser plasma environment. As the separation distance becomes larger, the magnetization parameter σ becomes smaller. The electrons are accelerated in these MR processes and their energy spectra can be fitted with double power-law spectra whose index will increase with increasing separation distance. Moreover, the collisionless shocks' contribution to energetic electrons is close to the magnetic reconnection contribution with σ decreasing, which results in a steeper electron energy spectrum. Basing on the 3D outflow momentum configuration, the energetic electron spectra are recounted and their spectrum index is close to 1 in these three cases because the magnetization parameter σ is very high in the 3D outflow area.
Keywords:  collisionless shocks      magnetic reconnection      magnetization parameter      electron acceleration  
Received:  03 August 2021      Revised:  05 October 2021      Accepted manuscript online:  27 October 2021
PACS:  52.50.Lp (Plasma production and heating by shock waves and compression)  
  94.30.cp (Magnetic reconnection)  
  52.38.Fz (Laser-induced magnetic fields in plasmas)  
Fund: This work was supported by the National Natural Science Foundation of China (Grant Nos. U1930108,12175018, 12135001, 12075030, and 11903006) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDA25030700). Yongli Ping acknowledges the support of the Open Research Program from Key Laboratory of Geospace Environment CAS.
Corresponding Authors:  Yongli Ping, Jiayong Zhong     E-mail:  ylping@bnu.edu.cn;jyzhong@bnu.edu.cn

Cite this article: 

Qian Zhang(张茜), Yongli Ping(平永利), Weiming An(安维明), Wei Sun(孙伟), and Jiayong Zhong(仲佳勇) Effect of the magnetization parameter on electron acceleration during relativistic magnetic reconnection in ultra-intense laser-produced plasma 2022 Chin. Phys. B 31 065203

[1] Ghisellini G, Celotti A and Lazzati D 2000 Mon. Not. R. Astron. Soc. 313 L1
[2] Lesch H and Birk G T 1998 Astrophys. J. 499 167
[3] Reames D V 2013 Space. Sci. Rev. 175 53
[4] Berezhko E G and Ksenofontov L 1999 J. Exp. Theor. Phys. 89 391
[5] Meli A and Quenby J J 2003 Astropart. Phys. 19 649
[6] Kinney R and McWilliams J C 1995 Small-Scale Structures in Three-Dimensional Hydrodynamic and Magnetohydrodynamic Turbulence 462 289
[7] Li C K, Séguin F H, Frenje J A, Rygg J R, Petrasso R D, Town R P J, Landen O L, Knauer J P and Smalyuk V A 2007 Phys. Rev. Lett. 99 055001
[8] Palmer C A J, Campbell P T, Ma Y, Antonelli L, Bott A F A, Gregori G, Halliday J, Katzir Y, Kordell P, Krushelnick K, Lebedev S V, Montgomery E, Notley M, Carroll D C, Ridgers C P, Schekochihin A A, Streeter M J V, Thomas A G R, Tubman E R, Woolsey N and Willingale L 2019 Phys. Plasmas 26 083109
[9] Nilson P M, Willingale L, Kaluza M C, Kamperidis, C, Minardi S, Wei M S, Fernandes P, Notley M, Bandyopadhyay S, Sherlock M, Kingham R J, Tatarakis M, Najmudin Z, Rozmus W, Evans R G, Haines M G, Dangor A E and Krushelnick K 2006 Phys. Rev. Lett. 97 255001
[10] Dong Q L, Wang S J, Lu Q M, Huang C, Yuan D W, Liu X, Lin X X, Li Y T, Wei H G, Zhong J Y, Shi J R, Jiang S E, Ding Y K, Jiang B B, Du K, He X T, Yu M Y, Liu C S, Wang S, Tang Y J, Zhu J Q, Zhao G, Sheng Z M and Zhang J 2012 Phys. Rev. Lett. 108 215001
[11] Zhong J, Li Y, Wang X, Wang J, Dong Q, Xiao C, Wang S, Liu X, Zhang L, An L, Wang F, Zhu J, Gu Y, He X, Zhao G and Zhang J 2010 Nat. Phys. 6 984
[12] Kuramitsu Y, Chu H H, Hau L N, Chen S H, Liu Y L, Hsieh C Y, Sakawa Y, Hideaki T and Wang J 2015 High. Energy. Density. Phys. 17 198
[13] Zhong J Y, Lin J, Li Y T, Wang X, Li Y, Zhang K, Yuan D W, Ping Y L, Wei H G, Wang J Q, Su L N, Li F, Han B, Liao G Q, Yin C L, Fang Y, Yuan X, Wang C, Sun J R, Liang G Y, Wang F L, Ding Y K, He X T, Zhu J Q, Sheng Z M, Li G, Zhao G and Zhang J 2016 Astrophys. J. Suppl. Ser. 225 30
[14] Fox W, Park J, Deng W, Fiksel G, Spitkovsky A and Bhattacharjee A 2017 Phys. Plasmas 24 092901
[15] Raymond A E, Dong C F, McKelvey A, Zulick C, Alexander N, Bhattacharjee A, Campbell P T, Chen H, Chvykov V, Del Rio E, Fitzsimmons P, Fox W, Hou B, Maksimchuk A, Mileham C, Nees J, Nilson P M, Stoeckl C, Thomas A G R, Wei M S, Yanovsky V, Krushelnick K and Willingale L 2018 Phys. Rev. E 98 043207
[16] Yi L, Shen B, Pukhov A and Fülöp T 2018 Nat. Commun. 9 1601
[17] Law K F F, Abe Y, Morace A, Arikawa Y, Sakata S, Lee S, Matsuo K, Morita H, Ochiai Y, Liu C, Yogo A, Okamoto K, Golovin D, Ehret M, Ozaki T, Nakai M, Sentoku Y, Santos J J, d'Humiéres, E, Korneev P and Fujioka S 2020 Phys. Rev. E 102 033202
[18] Fox W, Matteucci J, Moissard C, Schaeffer, D B, Bhattacharjee A, Germaschewski K and Hu S X 2018 Phys. Plasmas 25 102106
[19] Fiuza F, Swadling G F, Grassi A, Rinderknecht H G, Higginson D P, Ryutov D D, Bruulsema C, Drake R P, Funk S, Glenzer S, Gregori G, Li C K, Pollock B B, Remington B A, Ross J S, Rozmus W, Sakawa Y, Spitkovsky A, Wilks S and Park H S 2020 Nat. Phys. 16 916
[20] Lu S, Lu Q, Huang C, Dong Q, Zhu J, Sheng, Z, Wang S and Zhang J 2014 New J. Phys. 16 083021
[21] Lu S, Lu Q, Guo F, Sheng Z, Wang H and Wang S 2016 New J. Phys. 18 013051
[22] Qiao B, Xu Z, Yao W P, Chang H X and He X T 2017 Plasma Phys. Control Fusion 59 064002
[23] Gu Y J, Pegoraro F, Sasorov P V, Golovin D, Yogo A, Korn G and Bulanov S V 2019 Sci. Rep. 9 19462
[24] Ping Y L, Zhong J Y, Sheng Z M, Wang X G, Liu B, Li Y T, Yan X Q, He X T, Zhang J and Zhao G 2014 Phys. Rev. E 89 031101
[25] Ping Y L, Zhong J Y, Wang X G, Sheng Z M and Zhao G 2017 Astrophys. J. 849 137
[26] Bessho N and Bhattacharjee A 2012 Astrophys. J. 750 129
[27] Guo F, Li X, Li H, Daughton W, Zhang B, Lloyd-Ronning N, Liu Y H, Zhang H and Deng W 2016 Astrophys. J. 818 L9
[28] Sironi L and Spitkovsky A 2014 Astrophys. J. 783 L21
[29] Hoshino M 2005 J. Geophys. Res. Space. Phys. 110 A10215
[30] Zenitani S and Hoshino M 2007 Astrophys. J. 670 702
[31] Dahlin J T 2020 Phys. Plasmas 27 100601
[32] Lu Y, Guo F, Kilian P, Li H, Huang C and Liang E 2021 Astrophys. J. 908 147
[33] Yan X Q, Lin C, Sheng Z M, Guo Z Y, Liu B C, Lu Y R, Fang J X and Chen J E 2008 Phys. Rev. Lett. 100 135003
[34] Liu B, Wang H Y, Liu J, Fu L B, Xu Y J, Yan X Q and He X T 2013 Phys. Rev. Lett. 110 045002
[35] Ping Y L, Zhong J Y, Wang X G, Zhao G, Li Y T and He X T 2021 Plasma Phys. Controlled Fusion 63 085012
[36] Yao W, Fazzini A, Chen, S N, Burdonov K, Antici P, Béard J, Bolaños S, Ciardi A, Diab R, Filippov E D, Kisyov S, Lelasseux V, Miceli M, Moreno Q, Nastasa V, Orlando S, Pikuz S, Popescu D C, Revet G, Ribeyre X, d'Humiéres E and Fuchs J 2020 Nat. Phys. 17 1177
[37] Fiuza F, Fonseca R A, Tonge J, Mori W B and Silva L O 2012 Phys. Rev. Lett. 108 235004
[38] Spitkovsky A 2008 Astrophys. J. 682 L5
[39] Sironi L and Spitkovsky A 2011 Astrophys. J. 726 75
[40] Celotti A and Ghisellini G 2008 Mon. Not. R. Astron. Soc. 385 283
[41] Zhang B and Yan H 2011 Astrophys. J. 726 90
[42] Zhang J, Liang E W, Sun, X N, Zhang B, Lu Y and Zhang S N 2013 Astrophys. J. 774 L5
[43] Ji H and Daughton W 2011 Phys. Plasmas 18 111207
[44] Uzdensky D A 2011 Space Sci. Rev. 160 45
[1] Collisionless magnetic reconnection in the magnetosphere
Quanming Lu(陆全明), Huishan Fu(符慧山), Rongsheng Wang(王荣生), and San Lu(卢三). Chin. Phys. B, 2022, 31(8): 089401.
[2] Electron acceleration during magnetic islands coalescence and division process in a guide field reconnection
Shengxing Han(韩圣星), Huanyu Wang(王焕宇), and Xinliang Gao(高新亮). Chin. Phys. B, 2022, 31(2): 025202.
[3] Application of Galerkin spectral method for tearing mode instability
Wu Sun(孙武), Jiaqi Wang(王嘉琦), Lai Wei(魏来), Zhengxiong Wang(王正汹), Dongjian Liu(刘东剑), and Qiaolin He(贺巧琳). Chin. Phys. B, 2022, 31(11): 110203.
[4] Ultrabright γ-ray emission from the interaction of an intense laser pulse with a near-critical-density plasma
Aynisa Tursun(阿依妮萨·图尔荪), Mamat Ali Bake(买买提艾力·巴克), Baisong Xie(谢柏松), Yasheng Niyazi(亚生·尼亚孜), and Abuduresuli Abudurexiti(阿不都热苏力·阿不都热西提). Chin. Phys. B, 2021, 30(11): 115202.
[5] Direct electron acceleration by chirped laser pulse in a cylindrical plasma channel
Yong-Nan Hu(胡永南), Li-Hong Cheng(成丽红), Zheng-Wei Yao(姚征伟), Xiao-Bo Zhang(张小波), Ai-Xia Zhang(张爱霞), Ju-Kui Xue(薛具奎). Chin. Phys. B, 2020, 29(8): 084103.
[6] Spontaneous growth of the reconnection electric field during magnetic reconnection with a guide field: A theoretical model and particle-in-cell simulations
Kai Huang(黄楷), Quan-Ming Lu(陆全明), Rong-Sheng Wang(王荣生), Shui Wang(王水). Chin. Phys. B, 2020, 29(7): 075202.
[7] Formation of electron depletion layer and parallel electric field in the separatrix region of anti-parallel magnetic reconnection
Zisheng Li(李子圣), Huanyu Wang(王焕宇), Xinliang Gao(高新亮). Chin. Phys. B, 2019, 28(7): 075203.
[8] Basic features of the multiscale interaction between tearing modes and slab ion-temperature-gradient modes
L Wei(魏来), Z X Wang(王正汹), J Q Li(李继全), Z Q Hu(胡朝清), Y Kishimoto(岸本泰明). Chin. Phys. B, 2019, 28(12): 125203.
[9] Out-of-plane shear flow effects on fast magnetic reconnection in a two-dimensional hybrid simulation model
Wang Lin (王琳), Wang Xian-Qu (王先驱), Wang Xiao-Gang (王晓钢), Liu Yue (刘悦). Chin. Phys. B, 2014, 23(2): 025203.
[10] Influence of spatiotemporal coupling on the capture-and-acceleration-scenario vacuum electron acceleration by ultrashort pulsed laser beam
Lu Da-Quan(陆大全), Qian Lie-Jia(钱列加), Li Yong-Zhong(李永忠), and Fan Dian-Yuan(范滇元). Chin. Phys. B, 2007, 16(1): 88-94.
[11] Direct acceleration of electrons using two crossed Laguerre--Gaussian laser beams in vacuum
Zhao Zhi-Guo (赵志国), Lü Bai-Da (吕百达). Chin. Phys. B, 2006, 15(5): 1022-1027.
[12] Electron acceleration by two crossed Bessel--Gaussian beams in vacuum
Zhao Zhi-Guo(赵志国) and Lü Bai-Da(吕百达). Chin. Phys. B, 2006, 15(10): 2332-2337.
[13] Particle simulation on electron acceleration process by the laser ponderomotive force in inhomogeneous underdense plasma layers
Cao Li-Hua (曹莉华), Yu Wei (余玮), Xu Han (徐涵), Liu Zhan-Jun (刘占军), Zheng Chun-Yang (郑春阳), Li Bin (李斌). Chin. Phys. B, 2004, 13(8): 1302-1308.
No Suggested Reading articles found!