|
|
Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization |
Mingrui He(何明睿)1,†, Yang Fan(樊洋)1, Yueming Zhou(周月明)2, and Peixiang Lu(陆培祥)2 |
1 Department of Basic Courses, Naval University of Engineering, Wuhan 430033, China; 2 School of Physics and Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China |
|
|
Abstract Coherent superposition of electronic states induces attosecond electron motion in molecules. We theoretically investigate the strong-field ionization of this superposition state by numerically solving the time-dependent Schrödinger equation. In the obtained photoelectron momentum distribution, an intriguing bifurcation structure appears in the strong-field holographic interference pattern. We demonstrate that this bifurcation structure directly provides complete information about the status of the transient wave function of the superposition state:the horizontal location of the bifurcation in the momentum distribution reveals the relative phase of the involved components of the superposition state and the vertical position indicates the relative coefficient. Thus, this bifurcation structure takes a snapshot of the transient electron wave packet of the superposition state and provides an intuitive way to monitor electron motion in molecules.
|
Received: 09 February 2021
Revised: 05 April 2021
Accepted manuscript online: 14 April 2021
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.Re
|
(Ultrafast processes; optical pulse generation and pulse compression)
|
|
32.80.Fb
|
(Photoionization of atoms and ions)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11874163, 11604108, and 11604388), the Program for HUST Academic Frontier Youth Team, and the Fundamental Research Funds for the Central Universities, China (HUST No. 2017KFXKJC002). |
Corresponding Authors:
Mingrui He
E-mail: hmr_emma@163.com
|
Cite this article:
Mingrui He(何明睿), Yang Fan(樊洋), Yueming Zhou(周月明), and Peixiang Lu(陆培祥) Taking snapshots of a moving electron wave packet in molecules using photoelectron holography in strong-field tunneling ionization 2021 Chin. Phys. B 30 123202
|
[1] Lépine F, Ivanov M Y and Vrakking M J J 2014 Nat. Photon. 8 195 [2] Breidbach J and Cederbaum L S 2005 Phys. Rev. Lett. 94 033901 [3] Gronager M and Henriksen N E 1997 Chem. Phys. Lett. 278 166 [4] Bandrauk A D, Chelkowski S and Nguyen H S 2004 Int. J. Quantum Chem. 100 834 [5] Remacle F and Levine R D 2006 Proc. Natl. Acad. Sci. 103 6793 [6] López-Martens R, Varjú K, Johnsson P, Mauritsson J, Mairesse Y, Salières P, Gaarde M B, Schafer K J, Persson A, Svanberg S, Wahlström C and L'Huillier A 2005 Phys. Rev. Lett. 94 033001 [7] Gaumnitz T, Jain A, Pertot Y, Huppert M, Jordan I, Ardana-Lamas F and Wörner H J 2017 Opt. Express 25 27506 [8] Yan J, Xie W, Li M, Liu K, Luo S, Cao C, Guo K, Cao W, Lan P, Zhang Q, Zhou Y and Lu P 2020 Phys. Rev. A 102 013117 [9] Xu S, Zhang Q, Ran C, Huang X, Cao W and Lu P 2021 Chin. Phys. B 30 013202 [10] Niikura H, Villeneuve D M and Corkum P B 2005 Phys. Rev. Lett. 94 083003 [11] Chelkowski S, Bredtmann T and Bandrauk A D 2012 Phys. Rev. A 85 033404 [12] Kraus P, Mignolet B, Baykusheva D, Rupenyan A, Horný L, Penka E, Grassi G, Tolstikhin O, Schneider J, Jensen F, Madsen L, Bandrauk A, Remacle F and Wörner H 2015 Science 350 790 [13] He L, Zhang Q, Lan P, Cao W, Zhu X, Zhai C, Wang F, Shi W, Li M, Bian X, Lu P and Bandrauk A D 2018 Nat. Commun. 9 1108 [14] Li L, Lan P, He L, Cao W, Zhang Q and Lu P 2020 Phys. Rev. Lett. 124 157403 [15] Goulielmakis E, Loh Z, Wirth A, Santra R, Rohringer N, Yakovlev V S, Zherebtsov S, Pfeifer T, Azzeer A M, Kling M F, Leone S R and Krausz F 2010 Nature 466 739 [16] Ott C, Kaldun A, Argenti L, Raith P, Meyer K, Laux M, Zhang Y, Blättermann A, Hagstotz S, Ding T, Heck R, Madroñero J, Martín F and Pfeifer T 2014 Nature 516 374 [17] Ossiander M, Siegrist F, Shirvanyan V, Pazourek R, Sommer A, Latka T, Guggenmos A, Nagele S, Feist J, Burgdörfer J, Kienberger R and Schultze M 2017 Nat. Phys. 13 280 [18] Mauritsson J, Remetter T, Swoboda M, Klünder K, L'Huillier A, Schafer K J, Ghafur O, Kelkensberg F, Siu W, Johnsson P, Vrakking M J J, Znakovskaya I, Uphues T, Zherebtsov S, Kling M F, Lépine F, Benedetti E, Ferrari F, Sansone G and Nisoli M 2010 Phys. Rev. Lett. 105 053001 [19] Klünder K, Johnsson P, Swoboda M, L'Huillier A, Sansone G, Nisoli M, Vrakking M J J, Schafer K J and Mauritsson J 2013 Phys. Rev. A 88 033404 [20] Xu M, Peng L, Zhang Z and Gong Q 2011 J. Phys. B:At. Mol. Opt. Phys. 44 021001 [21] Dixita G, Vendrella O and Santra R 2012 Proc. Natl. Acad. Sci. USA 109 11636 [22] Shao H and Starace A 2010 Phys. Rev. Lett. 105 263201 [23] Wörner H J and Corkum P B 2011 J. Phys. B:At. Mol. Opt. Phys. 44 041001 [24] Fechner L, Camus N, Ullrich J, Pfeifer T and Moshammer R 2014 Phys. Rev. Lett. 112 213001 [25] Yudin G L, Chelkowski S, Itatani J, Bandrauk A D and Corkum P B 2005 Phys. Rev. A 72 051401 [26] Yuan K, Shu C, Dong D and Bandrauk A D 2017 J. Phys. Chem. Lett. 8 2229 [27] Yuan K and Bandrauk A D 2017 Phys. Chem. Chem. Phys. 19 25846 [28] Walt S, Ram N, Atala M, Shvetsov-Shilovski N, von Conta A, Baykusheva D, Lein M and Wörner H 2017 Nat. Commun. 8 15651 [29] He M, Li Y, Zhou Y, Li M, Cao W and Lu P 2018 Phys. Rev. Lett. 120 133204 [30] Haertelt M, Bian X, Spanner M, Staudte A and Corkum P B 2016 Phys. Rev. Lett. 116 133001 [31] Huismans Y, Rouzée A, Gijsbertsen A, Jungmann J, Smolkowska A, Logman P, Lépine F, Cauchy C, Zamith S, Marchenko T, Bakker J, Berden G, Redlich B, Van der Meer A, Muller H, Vermin W, Schafer K, Spanner M, Ivanov M, Smirnova O, Bauer D, Popruzhenko S and Vrakking M 2011 Science 331 61 [32] Liu M, Li M, Wu C, Gong Q, Staudte A and Liu Y 2016 Phys. Rev. Lett. 116 163004 [33] Tan J, Zhou Y, Ke Q, He M, Liang J, Li Y, Li M and Lu P 2020 Phys. Rev. A 101 013407 [34] Zhou Y, Tan J, Li M and Lu P 2021 Sci. Chin.-Phys. Mech. Astron. 64 273011 [35] Zhou Y, Tolstikhin O I and Morishita T 2016 Phys. Rev. Lett. 116 173001 [36] He M, Zhou Y, Li Y, Li M and Lu P 2017 Opt. Quantum Electron. 49 232 [37] Tong X, Watahiki S, Hino K and Toshima N 2007 Phys. Rev. Lett. 99 093001 [38] Despré V, Golubev N and Kuleff A 2018 Phys. Rev. Lett. 121 203002 [39] Lara-Astiaso M, Ayuso D, Tavernelli I, Decleva P, Palacios A and Martin F 2016 Faraday Discuss 194 41 [40] Arbó D G, Ishikawa K L, Schiessl K, Persson E and Burgdörfer J 2010 Phys. Rev. A 81 021403 [41] Lindner F, Schätzel M G, Walther H, Baltuška A, Goulielmakis E, Krausz F, Milošević D B, Bauer D, Becker W and Paulus G G 2005 Phys. Rev. Lett. 95 040401 [42] Arbó D G, Persson E and Burgdörfer J 2006 Phys. Rev. A 74 063407 [43] Tolstikhin O I and Morishita T 2012 Phys. Rev. A 86 043417 [44] Bian X and Bandrauk A D 2012 Phys. Rev. Lett. 108 263003 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|