|
|
Response of HD-V2 radiochromic film to argon ions |
Lei Cheng(程蕾)1,2, Zhe Zhang(张喆)1,4,†, Guiyun Liang(梁贵云)3, and Yutong Li(李玉同)1,2,4,5,‡ |
1 Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences(CAS), Beijing 100190, China; 2 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; 3 Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012, China; 4 Songshan Lake Materials Laboratory, Dongguan 523808, China; 5 CAS Center for Excellence in Ultra-intense Laser Science, Shanghai 201800, China |
|
|
Abstract A two-dimensional dose detector for ion beam is required in many high energy density physics experiments. As a solid detector, the GAFChromic film offers a good spatial resolution and dosimetric accuracy. For an absolute dose measurement, the relative effectiveness, which represents the darkening efficiency of the film to a radiation source, needs to be taken into consideration. In this contribution, the dose-response of HD-V2 to argon ions is presented for the first time. The calibration was taken over the dose range of 65 Gy-660 Gy with 8-keV argon ions. The response of net optical density is from 0.01 to 0.05. Triple-color dose-response functions are derived. The relative effectiveness for the argon ion beams is about 5%, much lower than that of protons and carbon ions. To explain this effect, the inactivation probability based on track theory of ion bombardment is proposed. Furthermore, a theoretical prediction of the relative effectiveness for single ion is presented, showing the dependence of the darkening efficiency on the atomic number and the incident energy of ions.
|
Received: 14 May 2021
Revised: 31 May 2021
Accepted manuscript online: 03 June 2021
|
PACS:
|
07.77.Ka
|
(Charged-particle beam sources and detectors)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1930107 and 11827807) and the Strategic Priority Research Program of the Chinese Academy of Sciences (Grants Nos. XDA25030100, XDA25010000, and XDB16010200). |
Corresponding Authors:
Zhe Zhang, Yutong Li
E-mail: zzhang@iphy.ac.cn;ytli@iphy.ac.cn
|
Cite this article:
Lei Cheng(程蕾), Zhe Zhang(张喆), Guiyun Liang(梁贵云), and Yutong Li(李玉同) Response of HD-V2 radiochromic film to argon ions 2021 Chin. Phys. B 30 080702
|
[1] Wagner F, Deppert O, Brabetz C, Fiala P, Kleinschmidt A, Poth P, Schanz V A, Tebartz A, Zielbauer B, Roth M, Stöhlker T and Bagnoud V 2016 Phys. Rev. Lett. 116 205002 [2] Wilks S C, Langdon A B, Cowan T E, Roth M, Singh M, Hatchett S, Key M H, Pennington D, Mackinnon A and Snavely R A 2001 Phys. Plasmas 8 542 [3] Esirkepov T, Borghesi M, Bulanov S V, Mourou G and Tajima T 2004 Phys. Rev. Lett. 92 175003 [4] Yin L, Albright B J, Bowers K J, Jung D, Fernández J C and Hegelich B M 2011 Phys. Rev. Lett. 107 045003 [5] Haberberger D, Tochitsky S, Fiuza F, Gong C, Fonseca R A, Silva L O, Mori W B and Joshi C 2012 Nat. Phys. 8 95 [6] Sarri G, Cecchetti C A, Romagnani L, Brown C M, Hoarty D J, James S, Morton J, Dieckmann M E, Jung R, Willi O, Bulanov S V, Pegoraro F and Borghesi M 2010 New J. Phys. 12 045006 [7] Li C K, Tzeferacos P, Lamb D, Gregori G, Norreys P A, Rosenberg M J, Follett R K, Froula D H, Koenig M, Seguin F H, Frenje J A, Rinderknecht H G, Sio H, Zylstra A B, Petrasso R D, Amendt P A, Park H S, Remington B A, Ryutov D D, Wilks S C, Betti R, Frank A, Hu S X, Sangster T C, Hartigan P, Drake R P, Kuranz C C, Lebedev S V and Woolsey N C 2016 Nat. Commun. 7 13081 [8] Bonnet T, Comet M, Denis-Petit D, Gobet F, Hannachi F, Tarisien M, Versteegen M and Aleonard M M 2013 Rev. Sci. Instrum. 84 013508 [9] Nishiura M, Kubo N, Hirouchi T, Ido T, Nagasaka T, Mutoh T, Matsuyama S, Isobe M, Okamoto A and Shinto K 2006 Rev. Sci. Instrum. 77 10E720 [10] Rieker G B, Poehlmann F R and Cappelli M A 2013 Phys. Plasmas 20 073115 [11] Klir D, Jackson S L, Shishlov A V, Kokshenev V A, Rezac K, Beresnyak A R, Cherdizov R K, Cikhardt J, Cikhardtova B, Dudkin G N, Engelbrecht J T, Fursov F I, Krasa J, Kravarik J, Kubes P, Kurmaev N E, Munzar V, Ratakhin N A, Turek K and Varlachev V A 2020 Matter Radiat. Extremes. 5 026401 [12] Duan X J, Wang N Y, Tan Z X, Lan X F, Huang Y S, Guo S L, Yang D W and Tang X Z 2010 Acta Phys. Sin. 59 3147 (in Chinese) [13] Niroomand-Rad A, Blackwell C R, Coursey B M, Gall K P, Galvin J M, McLaughlin W L, Meigooni A S, Nath R, Rodgers J E and Soares C G 1998 Med. Phys. 25 2093 [14] Liao G Q, Li Y T, Zhu B J, Li Y F, Li F, Li M C, Wang X, Zhang Z, He S K, Wang W W, Lu F, Zhang F Q, Yang L, Zhou K N, Xie N, Hong W, Gu Y Q, Zhao Z Q, Zhang B H and Zhang J 2016 Matter Radiat. Extremes. 1 187 [15] See http://www.gafchromic.com/documents/gafchromic-hdv2.pdf [16] Micke A, Lewis D F and Yu X 2011 Med. Phys. 38 2523 [17] Xu X H, Liao Q, Wu M J, Geng Y X, Li D Y, Zhu J G, Li C C, Hu R H, Shou Y R, Chen Y H, Lu H Y, Ma W J, Zhao Y Y, Zhu K, Lin C and Yan X Q 2019 Rev. Sci. Instrum. 90 033306 [18] Martišíková M and Jäkel O 2010 Radiat. Meas. 45 1268 [19] Levine M A, Marrs R E, Henderson J R, Knapp D A and Schneider M B 1988 Phys. Scr. T22 157 [20] Levine M A, Marrs R E, Bardsley J N, Beiersdorfer P, Bennett C L, Chen M H, Cowan T, Dietrich D, Henderson J R, Knapp D A, Osterheld A, Penetrante B M, Schneider M B and Scofield J H 1989 Nucl. Instrum. Methods Phys. Res. B 43 431 [21] Soares C G 2007 Radiat. Meas. 41 S100 [22] Ziegler J F, Ziegler M D and Biersack J P 2008 Nucl. Instrum. Methods Phys. Res. B 268 1818 [23] Fang D Q, Feng J, Cai X Z, Wang J S, Shen W Q, Ma Y G, Zhu Y T, Li S L, Wu H Y, Gou Q B, Jin G M, Zhan W L, Guo Z Y and Xiao G Q 1999 Chin. Phys. Lett. 16 15 [24] Devic S, Seuntjens J, Sham E, Podgorsak E B, Schmidtlein C R, Kirov A S and Soares C G 2005 Med. Phys. 32 2245 [25] Feng Y W, Tiedje H F, Gagnon K and Fedosejevs R 2018 Rev. Sci. Instrum. 89 043511 [26] Devic S, Seuntjens J, Hegyi G, Podgorsak E B, Soares C G, Kirov A S, Ali I, Williamson J F and Elizondo A 2004 Med. Phys. 31 2392 [27] Chen S N, Gauthier M, Bazalova-Carter M, Bolanos S, Glenzer S, Riquier R, Revet G, Antici P, Morabito A, Propp A, Starodubtsev M and Fuchs J 2016 Rev. Sci. Instrum. 87 073301 [28] Butts J J and Katz R 1967 Radiat. Res. 30 855 [29] Jirasek A and Duzenli C 2002 Med. Phys. 29 569 [30] Hansen J W and Olsen K J 1984 Radiat. Res. 97 1 [31] Barkas W H 1963 Nuclear Research Emulsions, Vol. 1 (New York: Academic Press) p. 371 [32] Martišíková M and Jäkel O 2010 Phys. Med. Biol. 55 3741 [33] Schollmeier M, Geissel M, Sefkow A B and Flippo K A 2014 Rev. Sci. Instrum. 85 043305 [34] Valliéres S, Bienvenue C, Valdés P P, Salvadori M and Antici P 2019 Rev. Sci. Instrum. 90 083301 [35] Rosenstein M, Eisen H, Roush M L and Silverman J 1975 Int. J. Radiat. Isot. 26 423 |
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|