Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080302    DOI: 10.1088/1674-1056/abe2ff
GENERAL Prev   Next  

Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit

Jin You(游金)1,3, Yue Wang(王玥)1,†, and Jun-Ming An(安俊明)1,2,3
1 State Key Laboratory of Integrated Optoelectronics, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China;
2 Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, China;
3 College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Silica-based planar lightwave circuit (PLC) devices can reduce transmission loss and cost in a quantum key distribution (QKD) system, and have potential applications in integration and production. A PLC-based quantum decoding integrated chip for multi-protocols is designed and fabricated, which is composed of variable optical splitters (VOSs), asymmetric Mach-Zehnder interferometers (AMZIs), and variable directional couplers (VDCs). Balanced pulse-pairs of four outputs are obtained simultaneously with measured delay times of 405 ps and 402 ps, respectively. The chip has advantages in achieving high interference visibility and low quantum bit error rate (QBER).
Keywords:  quantum key distribution (QKD)      planar lightwave circuit (PLC)      multi-protocols      decoder  
Received:  11 December 2020      Revised:  16 January 2021      Accepted manuscript online:  04 February 2021
PACS:  03.67.Hk (Quantum communication)  
Fund: Project supported by the National Key Research and Development Program of China (Grant No. 2018YFA0306403) and the National Nature Science Foundation of China (Grant No. 61805232).
Corresponding Authors:  Yue Wang     E-mail:  wy1022@semi.ac.cn

Cite this article: 

Jin You(游金), Yue Wang(王玥), and Jun-Ming An(安俊明) Realization of simultaneous balanced multi-outputs for multi-protocols QKD decoding based onsilica-based planar lightwave circuit 2021 Chin. Phys. B 30 080302

[1] Tang G Z, Sun S H and Li C Y 2019 Chin. Phys. Lett. 36 070301
[2] Zhang Q Y, Xu P and Zhu S N 2018 Chin. Phys. B 27 054207
[3] Cao X, Zopf M and Ding F 2019 J. Semicond. 40 071901
[4] Bennett C H and Brassard G 2014 Theor. Comput. Sci. 560 7
[5] Han Z F, Mo X F Gui Y Z and Guo G C 2005 Appl. Phys. Lett. 86 221103
[6] Dou T Q, Wang J P, Li Z H, Qu W X, Yang S Y, Sun Z Q, Zhou F, Han Y X, Huang Y Q and Ma H Q 2020 Chin. Phys. Lett. 37 110301
[7] Cai H, Long C M, DeRose C T, Boynton N, Urayama J, Camacho R, Pomerene A, Starbuck A L, Trotter D C, Davids P S and Lentine A L 2017 Opt. Express 25 12282
[8] Li Q, Zhou J Y and Liu Z H 2019 J. Semicond. 40 072902
[9] Townsend P D, Rarity J G and Tapster P R 1993 Electron. Lett. 29 634
[10] Tang G Z, Sun S H and Chen H 2016 Chin. Phys. Lett. 33 120301
[11] Li J J, Wang Y, Li H W and Bao W S 2020 Chin. Phys. B 29 030303
[12] Ren M Z, Li X and Zhang J S 2019 Appl. Opt. 58 7817
[13] He Z, Yang J and Zhou L 2019 J. Semicond. 40 071905
[14] Ma C, Sacher W D, Tang Z, Mikkelsen J C, Yang Y, Xu F, Thiessen T, Lo H K and Poon J K S 2016 Optica 3 1274
[15] Harris N C, Bunandar D, Pant M, Steinbrecher G R, Mower J, Prabhu M, BaehrJones T, Hochberg M and Englund D 2016 Nanophotonics 5 456
[16] Chen X 2019 J. Semicond. 39 101001
[17] Lu D, He Y, Li Z, Zhao L and Wang W 2018 J. Semicond. 39 050301
[18] Yuan C, Dai J, Jia H, Ding J, Zhang L, Fu X and Yang L 2018 J. Semicond. 39 101001
[19] Sibson P, Erven C, Godfrey M, Miki S, Yamashita T, Fujiwara M, Sasaki M, Terai H, Tanner M G, Natarajan C M, Hadfield R H, O'Brien J L and Thompson M G 2017 Nat. Commun. 8 13984
[20] Sibson P, Kennard J E, Stanisic S, Erven C, O'Brien J L and Thompson M G 2018 Optica 4 172
[21] Nambu Y, Hatanaka T and Nakamura K 2004 Jpn. J. Appl. Phys. 43 L1109
[1] Low-loss belief propagation decoder with Tanner graph in quantum error-correction codes
Dan-Dan Yan(颜丹丹), Xing-Kui Fan(范兴奎), Zhen-Yu Chen(陈祯羽), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010304.
[2] Determination of quantum toric error correction code threshold using convolutional neural network decoders
Hao-Wen Wang(王浩文), Yun-Jia Xue(薛韵佳), Yu-Lin Ma(马玉林), Nan Hua(华南), and Hong-Yang Ma(马鸿洋). Chin. Phys. B, 2022, 31(1): 010303.
[3] Proof-of-principle experimental demonstration of quantum secure imaging based on quantum key distribution
Yi-Bo Zhao(赵义博), Wan-Li Zhang(张万里), Dong Wang(王东), Xiao-Tian Song(宋萧天), Liang-Jiang Zhou(周良将), Chi-Biao Ding(丁赤飚). Chin. Phys. B, 2019, 28(10): 104203.
No Suggested Reading articles found!