Please wait a minute...
Chin. Phys. B, 2021, Vol. 30(8): 080503    DOI: 10.1088/1674-1056/ac0905
GENERAL Prev   Next  

Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors

Fang-Fang Zhang(张芳芳)1,2, Rui Gao(高瑞)1,†, and Jian Liu(刘坚)3
1 Department of Control Science and Engineering, Shandong University, Jinan 250061, China;
2 Department of Electrical Engineering and Automation, Qilu University of Technology(Shandong Academy of Sciences), Jinan 250353, China;
3 School of Mathematical Sciences, University of Jinan, Jinan 250022, China
Abstract  As the competition for marine resources is increasingly fierce, the security of underwater acoustic communication has attracted a great deal of attention. The information and location of the communicating platform can be leaked during the traditional underwater acoustic communication technology. According to the unique advantages of chaos communication, we put forward a novel communication scheme using complex parameter modulation and the complex Lorenz system. Firstly, we design a feedback controller and parameter update laws in a complex-variable form with rigorous mathematical proofs (while many previous references on the real-variable form were only special cases in which the imaginary part was zero), which can be realized in practical engineering; then we design a new communication scheme employing parameter modulation. The main parameter spaces of the complex Lorenz system are discussed, then they are adopted in our communication scheme. We also find that there exist parametric attractors in the complex Lorenz system. We make numerical simulations in two channels for digital signals and the simulations verify our conclusions.
Keywords:  parameter modulation      identification      chaotic system      acoustic wireless communication  
Received:  12 April 2021      Revised:  26 May 2021      Accepted manuscript online:  08 June 2021
PACS:  05.45.Pq (Numerical simulations of chaotic systems)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Vx (Communication using chaos)  
  05.45.Jn (High-dimensional chaos)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. U1806202, 61773010, and 61903207), the International Collaborative Research Project of Qilu University of Technology (Grant No. QLUTGJHZ2018020), and Major Scientific and Technological Innovation Projects of Shandong Province, China (Grant Nos. 2019JZZY010731 and 2020CXGC010901).
Corresponding Authors:  Rui Gao     E-mail:  gaorui@sdu.edu.cn

Cite this article: 

Fang-Fang Zhang(张芳芳), Rui Gao(高瑞), and Jian Liu(刘坚) Acoustic wireless communication based on parameter modulation and complex Lorenz chaotic systems with complex parameters and parametric attractors 2021 Chin. Phys. B 30 080503

[1] Yang G 2012 Research on Key Security Technology of Underwater Wireless Communication Networks (Ph.D. Dissertation) (Qingdao: Ocean University of China) (in Chinese)
[2] Syed A and Heidemann J 2016 Time Synchronization for High Latency Acoustic Networks April 10-15, 2016, San Francisco, CA, USA, p. 161
[3] Hu F, Malkawi Y, Kumar S and Xiao Y 2008 Wirel. Commun. Mob. Comput. 8 1165
[4] Castelluccia C, Chan A and Mykletun E 2009 ACM Trans. Sensor Network. 5 1
[5] Proakis J, Sozer E, Rice J and Stojanovic M 2001 IEEE Commun. Mag. 39 114
[6] Wang X, Wang Y, Wang S, Zhang Y and Wu X 2018 Chin. Phys. B 27 110502
[7] Shi Q, Huang X, Yuan F and Li Y 2021 Chin. Phys. B 30 020507
[8] Li C, Thio W, Sprott J, Zhang R and Lu T 2017 Chin. Phys. B 26 120501
[9] Wang X, Wang Y, Wang S, Zhang Y and Wu X 2018 Chin. Phys. B 27 110502
[10] Li X, Chao W, Yang Z, Lei Y and Song H 2018 Digit. Signal Process. 81 129
[11] Chen M, Xu W, Wang D and Wang L 2019 IET Commun. 13 2097
[12] Fowler A and Gibbon J 1982 Physica D 4 139
[13] Gibbon J and McGuinnes M 1982 Physica D 5 108
[14] Zhang F 2015 Entropy 17 4974
[15] Liu J, Wang Z, Shu M, Zhang F, Leng S and Sun X 2019 Complexity 10 7242791
[16] Guo J, Ma C, Wang Z and Zhang F 2020 Entropy 22 1260
[17] Huang D 2005 Phys. Rev. E 71 037203
[18] Lin W 2008 Phys. Lett. A 372 3195
[19] Zhang F, Sun K, Chen Y, Zhang H and Jiang C 2019 Nonlin. Dynam. 95 3161
[20] Zhang F, Li M, Leng S and Liu J 2019 J. Qilu Univ. Technol. 33 70
[21] Liu J and Liu S 2017 Appl. Math. Model. 48 440
[22] Liu J, Chen G and Zhao X 2021 Fractals 29 2150081
[23] Li C, Lei T, Wang X and Chen G 2020 Chaos 30 063124
[1] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
[2] Exponential sine chaotification model for enhancing chaos and its hardware implementation
Rui Wang(王蕊), Meng-Yang Li(李孟洋), and Hai-Jun Luo(罗海军). Chin. Phys. B, 2022, 31(8): 080508.
[3] Effect of observation time on source identification of diffusion in complex networks
Chaoyi Shi(史朝义), Qi Zhang(张琦), and Tianguang Chu(楚天广). Chin. Phys. B, 2022, 31(7): 070203.
[4] Analysis of identification methods of key nodes in transportation network
Qiang Lai(赖强) and Hong-Hao Zhang(张宏昊). Chin. Phys. B, 2022, 31(6): 068905.
[5] Solutions and memory effect of fractional-order chaotic system: A review
Shaobo He(贺少波), Huihai Wang(王会海), and Kehui Sun(孙克辉). Chin. Phys. B, 2022, 31(6): 060501.
[6] The transition from conservative to dissipative flows in class-B laser model with fold-Hopf bifurcation and coexisting attractors
Yue Li(李月), Zengqiang Chen(陈增强), Mingfeng Yuan(袁明峰), and Shijian Cang(仓诗建). Chin. Phys. B, 2022, 31(6): 060503.
[7] Effect of the target positions on the rapid identification of aluminum alloys by using filament-induced breakdown spectroscopy combined with machine learning
Xiaoguang Li(李晓光), Xuetong Lu(陆雪童), Yong Zhang(张勇),Shaozhong Song(宋少忠), Zuoqiang Hao(郝作强), and Xun Gao(高勋). Chin. Phys. B, 2022, 31(5): 054212.
[8] Neural-mechanism-driven image block encryption algorithm incorporating a hyperchaotic system and cloud model
Peng-Fei Fang(方鹏飞), Han Liu(刘涵), Cheng-Mao Wu(吴成茂), and Min Liu(刘旻). Chin. Phys. B, 2022, 31(4): 040501.
[9] Color-image encryption scheme based on channel fusion and spherical diffraction
Jun Wang(王君), Yuan-Xi Zhang(张沅熙), Fan Wang(王凡), Ren-Jie Ni(倪仁杰), and Yu-Heng Hu(胡玉衡). Chin. Phys. B, 2022, 31(3): 034205.
[10] Explosive synchronization: From synthetic to real-world networks
Atiyeh Bayani, Sajad Jafari, and Hamed Azarnoush. Chin. Phys. B, 2022, 31(2): 020504.
[11] Super deformability and thermoelectricity of bulk γ-InSe single crystals
Bin Zhang(张斌), Hong Wu(吴宏), Kunling Peng(彭坤岭), Xingchen Shen(沈星辰), Xiangnan Gong(公祥南), Sikang Zheng(郑思康), Xu Lu(卢旭), Guoyu Wang(王国玉), and Xiaoyuan Zhou(周小元). Chin. Phys. B, 2021, 30(7): 078101.
[12] Complex network perspective on modelling chaotic systems via machine learning
Tong-Feng Weng(翁同峰), Xin-Xin Cao(曹欣欣), and Hui-Jie Yang(杨会杰). Chin. Phys. B, 2021, 30(6): 060506.
[13] Energy behavior of Boris algorithm
Abdullah Zafar and Majid Khan. Chin. Phys. B, 2021, 30(5): 055203.
[14] Dynamical analysis, circuit realization, and application in pseudorandom number generators of a fractional-order laser chaotic system
Chenguang Ma(马晨光), Santo Banerjee, Li Xiong(熊丽), Tianming Liu(刘天明), Xintong Han(韩昕彤), and Jun Mou(牟俊). Chin. Phys. B, 2021, 30(12): 120504.
[15] Cascade discrete memristive maps for enhancing chaos
Fang Yuan(袁方), Cheng-Jun Bai(柏承君), and Yu-Xia Li(李玉霞). Chin. Phys. B, 2021, 30(12): 120514.
No Suggested Reading articles found!