Please wait a minute...
Chinese Physics, 2003, Vol. 12(6): 590-593    DOI: 10.1088/1009-1963/12/6/303
GENERAL Prev   Next  

Global stabilization of a Lorenz system

Li Shi-Hua (李世华), Tian Yu-Ping (田玉平)
Department of Automatic Control, Southeast University, Nanjing 210096, China
Abstract  In this paper, using feedback linearizing technique, we show that a Lorenz system can be considered as a cascade system. Moreover, this system satisfies the assumptions of global stabilization of cascade systems. Thus continuous state feedback control laws are proposed to globally stabilize the Lorenz system at the equilibrium point. Simulation results are presented to verify our method. This method can be further generalized to other chaotic systems such as Chen system,coupled dynamos system, etc.
Keywords:  control of chaos      Lorenz system      global stabilization  
Received:  16 September 2002      Revised:  30 December 2002      Accepted manuscript online: 
PACS:  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Xt (Synchronization; coupled oscillators)  
  05.45.Pq (Numerical simulations of chaotic systems)  
Fund: Project supported by the National Climbing Program of China (Grant No 970211017) and the National Natural Science Foundation of China (Grant No 69974009).

Cite this article: 

Li Shi-Hua (李世华), Tian Yu-Ping (田玉平) Global stabilization of a Lorenz system 2003 Chinese Physics 12 590

[1] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[2] A new image encryption algorithm based on fractional-order hyperchaotic Lorenz system
Wang Zhen (王震), Huang Xia (黄霞), Li Yu-Xia (李玉霞), Song Xiao-Na (宋晓娜). Chin. Phys. B, 2013, 22(1): 010504.
[3] Adaptive H synchronization of chaotic systems via linear and nonlinear feedback control
Fu Shi-Hui(付士慧), Lu Qi-Shao(陆启韶), and Du Ying(杜莹) . Chin. Phys. B, 2012, 21(6): 060507.
[4] Stochastic impulsive control for the stabilization of Lorenz system
Wang Liang(王亮), Zhao Rui(赵锐), Xu Wei(徐伟), and Zhang Ying(张莹) vgluept . Chin. Phys. B, 2011, 20(2): 020506.
[5] Horseshoe and entropy in a fractional-order unified system
Li Qing-Du(李清都), Chen Shu(陈述), and Zhou Ping(周平). Chin. Phys. B, 2011, 20(1): 010502.
[6] A new four-dimensional hyperchaotic Lorenz system and its adaptive control
Si Gang-Quan(司刚全), Cao Hui(曹晖), and Zhang Yan-Bin(张彦斌). Chin. Phys. B, 2011, 20(1): 010509.
[7] Estimating the bound for the generalized Lorenz system
Zheng Yu(郑宇) and Zhang Xiao-Dan(张晓丹) . Chin. Phys. B, 2010, 19(1): 010505.
[8] Anti-control of chaos in p--Ge photoconductor
Feng Yu-Ling(冯玉玲)andZhang Xi-He(张喜和) . Chin. Phys. B, 2009, 18(12): 5212-5218.
[9] Synchronization of noise-perturbed generalized Lorenz system by sliding mode control
Kong Cui-Cui(孔翠翠) and Chen Shi-Hua (陈士华). Chin. Phys. B, 2009, 18(1): 91-97.
[10] Novel four-wing and eight-wing attractors using coupled chaotic Lorenz systems
.. Giuseppe Grassi. Chin. Phys. B, 2008, 17(9): 3247-3251.
[11] Adaptive control and synchronization of an uncertain new hyperchaotic Lorenz system
Cai Guo-Liang(蔡国梁), Zheng Song(郑松), and Tian Li-Xin(田立新) . Chin. Phys. B, 2008, 17(7): 2412-2419.
[12] Anticontrol of chaos for discrete-time fuzzy hyperbolic model with uncertain parameters
Zhao Yan(赵琰), Zhang Hua-Guang(张化光), and Zheng Cheng-De(郑成德). Chin. Phys. B, 2008, 17(2): 529-535.
[13] Design of output feedback controller for a unified chaotic system
Li Wen-Lin(李文林), Chen Xiu-Qin(陈秀琴), and Shen Zhi-Ping(沈志萍). Chin. Phys. B, 2008, 17(1): 87-91.
[14] Amplitude death in steadily forced chaotic systems
Feng Guo-Lin(封国林) and He Wen-Ping(何文平). Chin. Phys. B, 2007, 16(9): 2825-2829.
[15] Notch filter feedback controlled chaos in buck converter
Lu Wei-Guo(卢伟国), Zhou Luo-Wei(周雒维), and Luo Quan-Ming(罗全明). Chin. Phys. B, 2007, 16(11): 3256-3261.
No Suggested Reading articles found!