Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(3): 038801    DOI: 10.1088/1674-1056/ab6c47
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers

Jun-Fan Chen(陈俊帆)1,2,3,4, Sheng-Sheng Zhao(赵生盛)1,2,3,4, Ling-Ling Yan(延玲玲)1,2,3,4, Hui-Zhi Ren(任慧志)1,2,3,4, Can Han(韩灿)1,2,3,4, De-Kun Zhang(张德坤)1,2,3,4, Chang-Chun Wei(魏长春)1,2,3,4, Guang-Cai Wang(王广才)1,2,3,4, Guo-Fu Hou(侯国付)1,2,3,4, Ying Zhao(赵颖)1,2,3,4, Xiao-Dan Zhang(张晓丹)1,2,3,4
1 Institute of Photoelectronic Thin Film Devices and Technology of Nankai University, Tianjin 300350, China;
2 Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, Tianjin 300350, China;
3 Engineering Center of Thin Film Photoelectronic Technology of Ministry of Education, Tianjin 300350, China;
4 Sino-Euro Joint Research Center for Photovoltaic Power Generation of Tianjin, Tianjin 300350, China
Abstract  Hydrogenated amorphous silicon oxide (a-SiOx:H) is an attractive passivation material to suppress epitaxial growth and reduce the parasitic absorption loss in silicon heterojunction (SHJ) solar cells. In this paper, a-SiOx:H layers on different orientated c-Si substrates are fabricated. An optimal effective lifetime (τeff) of 4743 μs and corresponding implied open-circuit voltage (iVoc) of 724 mV are obtained on <100>-orientated c-Si wafers. While τeff of 2429 μs and iVoc of 699 mV are achieved on <111>-orientated substrate. The FTIR and XPS results indicate that the a-SiOx:H network consists of SiOx (Si-rich), Si-OH, Si-O-SiHx, SiO2≡Si-Si, and O3≡Si-Si. A passivation evolution mechanism is proposed to explain the different passivation results on different c-Si wafers. By modulating the a-SiOx:H layer, the planar silicon heterojunction solar cell can achieve an efficiency of 18.15%.
Keywords:  a-SiOx:H      orientated wafers      silicon heterojunction  
Received:  14 November 2019      Revised:  08 January 2020      Accepted manuscript online: 
PACS:  88.40.H- (Solar cells (photovoltaics))  
  84.60.Jt (Photoelectric conversion)  
  88.40.jj (Silicon solar cells)  
Fund: Project supported by the National Key Research and Deveopment Program of China (Grant No. 2018YFB1500402), the National Natural Science Foundation of China (Grant Nos. 61674084 and 61874167), the Fundamental Research Funds for Central Universities, China, the Natural Science Foundation of Tianjin City, China (Grant No. 17JCYBJC41400), the Open Fund of the Key Laboratory of Optical Information Science & Technology of Ministry of Education of China (Grant No. 2017KFKT014), the 111 Project, China (Grant No. B16027), the International Cooperation Base, China (Grant No. 2016D01025), and Tianjin International Joint Research and Development Center, China.
Corresponding Authors:  Guang-Cai Wang, Guo-Fu Hou     E-mail:  wgc2008@nankai.edu.cn;gfhou@nankai.edu.cn

Cite this article: 

Jun-Fan Chen(陈俊帆), Sheng-Sheng Zhao(赵生盛), Ling-Ling Yan(延玲玲), Hui-Zhi Ren(任慧志), Can Han(韩灿), De-Kun Zhang(张德坤), Chang-Chun Wei(魏长春), Guang-Cai Wang(王广才), Guo-Fu Hou(侯国付), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹) Microstructure evolution and passivation quality of hydrogenated amorphous silicon oxide (a-SiOx:H) on <100>- and <111>-orientated c-Si wafers 2020 Chin. Phys. B 29 038801

[1] Yoshikawa K, Yoshida W, Irie T, Kawasaki H, Konishi K, Ishibashi H, Asatani T, Adachi D, Kanematsu M and Uzu H 2017 Sol. Energy Mater. Sol. Cells 173 37
[2] Fujiwara H, Kaneko T and Kondo M 2007 Appl. Phys. Lett. 91 481
[3] Hamakawa Y, Fujimoto K, Okuda K, Kashima Y, Nonomura S and Okamoto H 1983 Appl. Phys. Lett. 43 644
[4] Taguchi M, Yano A, Tohoda S, Matsuyama K, Nakamura Y, Nishiwaki T, Fujita K and Maruyama E 2014 IEEE J. Photovoltaics 4 96
[5] Peter Seif J, Descoeudres A, Filipič M, Smole F, Topič M, Charles Holman Z, De Wolf S and Ballif C 2014 J. Appl. Phys. 115 024502
[6] Ding K, Aeberhard U, Finger F and Rau U 2013 J. Appl. Phys. 113 871
[7] Zhang H, Nakada K, Miyajima S and Konagai M 2015 Phys. Status Solidi-Rapid Res. Lett. 9 225
[8] Krajangsang T, Inthisang S, Sritharathikhun J, Hongsingthong A, Limmanee A, Kittisontirak S, Chinnavornrungsee P, Phatthanakun R and Sriprapha K 2017 Thin Solid Films 628 107
[9] Ohdaira K, Oikawa T, Higashimine K and Matsumura H 2016 Current Appl. Phys. 16 1026
[10] Beyer W 2000 J. Non-Crystalline Solids 266 845
[11] Sonobe H, Sato A, Shimizu S, Matsui T, Kondo M and Matsuda A 2006 Thin Solid Films 502 306
[12] Sinton R A, Cuevas A and Stuckings M 2006 IEEE Photovoltaic Specialists Conference
[13] Knights J C, Lucovsky G and Nemanich R J 1978 Phil. Mag. B 37 467
[14] Lucovsky G, Nemanich R J and Knights J C 1979 Phys. Rev. B 19 2064
[15] Wagner H and Beyer W 1983 Solid State Commun. 48 585
[16] Smets A H M, Kessels W M M, Van d S, M C M 2003 Appl. Phys. Lett. 82 1547
[17] Lucovsky G and Pollard W B 1983 J. Vac. Sci. Technol. A 1 313
[18] Lucovsky G, Yang J, Chao S S, Tyler J E and Czubatyj W 1983 Phys. Rev. B 28 3225
[19] Samanta A and Das D 2009 Sol. Energy Mater. Sol. Cells 93 588
[20] Babal P, Blanker J, Vasudevan R, Smets A H M and Zeman M Photovoltaic Specialists Conference
[21] Hübner K 1977 Phys. Status Solidi 42 501
[22] Hübner K and Lehmann A 1978 Phys. Status Solidi 46 451
[23] Engelke R, Roy T, Neumann H G and Hübner K 1981 Phys. Status Solidi 65 271
[24] Hübner K 1977 Phys. Status Solidi 40 133
[25] Temkin R J 1975 J. Non-Crystalline Solids 17 215
[26] Kushner M J 1988 J. Appl. Phys. 63 2532
[27] Smith F and Yin Z 1991 J. Non-crystalline Solids 137 871
[28] Guizot J L, Nomoto K and Matsuda A 1991 Surf. Sci. 244 22
[29] Kawasaki H, Ohkura H, Fukuzawa T, Shiratani M, Watanabe Y, Yamamoto Y, Suganuma S, Hori M and Goto T 1997 Jpn. J. Appl. Phys. 36 4985
[30] Babal P, Blanker J, Vasudevan R, Smets A and Zeman M 2012 38th IEEE Photovoltaic Specialists Conference pp. 000321-000326
[31] Olibet S, Vallat-Sauvain E, Fesquet L, Monachon C, Hessler-Wyser A, Damon-Lacoste J, De Wolf S and Ballif C 2010 207 651
[32] Marr G V 2013 Handbook on Synchrotron Radiation: Vacuum Ultraviolet and Soft X-ray Processes, Vol. 2 (New York: Elsevier)
[33] Schaefer J A, Stucki F, Frankel D J and Gopel W 1984 J. Vac. Sci. Technol. B 2 359
[34] Richter S, Kai K, Naumann V, Werner M, Graff A, Gro? er S, Moldovan A, Zimmer M, Rentsch J and Bagdahn J 2015 Sol. Energy Mater. Sol. Cells 142 128
[35] Samanta S and Das D 2018 Physica E 103 99
[36] Stegemann B, Gad K M, Balamou P, Sixtensson D, Vössing D, Kasemann M and Angermann H 2017 Appl. Surf. Sci. 395 78
[37] Mehonic A, Buckwell M, Montesi L, Garnett L, Hudziak S, Fearn S, Chater R, Mcphail D and Kenyon A J 2015 J. Appl. Phys. 117 833
[38] Krywko-Cendrowska A, Marot L, Steiner R, Mathys D, Meyer E and Szklarczyk M 2019 J. Electroanal. Chem. 832 311
[39] Allen T G, Bullock J, Yang X, Javey A and De Wolf S 2019 Nature Energy 1 15
[1] Sub-stochiometric MoOx by radio-frequency magnetron sputtering as hole-selective passivating contacts for silicon heterojunction solar cells
Xiufang Yang(杨秀芳), Shengsheng Zhao(赵生盛), Qian Huang(黄茜), Cao Yu(郁超), Jiakai Zhou(周佳凯), Xiaoning Liu(柳晓宁), Xianglin Su(苏祥林),Ying Zhao(赵颖), and Guofu Hou(侯国付). Chin. Phys. B, 2022, 31(9): 098401.
[2] Influence of interface states, conduction band offset, and front contact on the performance of a-SiC: H(n)/c-Si(p) heterojunction solar cells
Zhi Qiao(乔治), Jian-Li Ji(冀建利), Yan-Li Zhang(张彦立), Hu Liu(刘虎), Tong-Kai Li(李同锴). Chin. Phys. B, 2017, 26(6): 068802.
No Suggested Reading articles found!