INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs |
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦) |
Institute of Microelectronics, Peking University, Beijing 100871, China |
|
|
Abstract The impacts of remote Coulomb scattering (RCS) on hole mobility in ultra-thin body silicon-on-insulator (UTB SOI) p-MOSFETs at cryogenic temperatures are investigated. The physical models including phonon scattering, surface roughness scattering, and remote Coulomb scatterings are considered, and the results are verified by the experimental results at different temperatures for both bulk (from 300 K to 30 K) and UTB SOI (300 K and 25 K) p-MOSFETs. The impacts of the interfacial trap charges at both front and bottom interfaces on the hole mobility are mainly evaluated for the UTB SOI p-MOSFETs at liquid helium temperature (4.2 K). The results reveal that as the temperature decreases, the RCS due to the interfacial trap charges plays an important role in the hole mobility.
|
Received: 13 November 2019
Revised: 24 December 2019
Accepted manuscript online:
|
PACS:
|
85.30.Tv
|
(Field effect devices)
|
|
73.40.Qv
|
(Metal-insulator-semiconductor structures (including semiconductor-to-insulator))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61674008, 61421005, and 61804003), the National Key Research and Development Program of China (Grant No. 2016YFA0202101), and the China Postdoctoral Science Foundation (Grant Nos. 2018M630034 and 2019T120017). |
Corresponding Authors:
Peng-Ying Chang, Xiao-Yan Liu
E-mail: pychang@pku.edu.cn;xyliu@ime.pku.edu.cn
|
Cite this article:
Xian-Le Zhang(张先乐), Peng-Ying Chang(常鹏鹰), Gang Du(杜刚), Xiao-Yan Liu(刘晓彦) Role of remote Coulomb scattering on the hole mobility at cryogenic temperatures in SOI p-MOSFETs 2020 Chin. Phys. B 29 038505
|
[1] |
Pla J J, Tan K Y, Dehollain J P, Lim W H, Morton J J L, Jamieson D N, Dzurak A S and Morello A 2012 Nature 489 541
|
[2] |
Elzerman J M, Hanson R, Willems v B L H, Witkamp B, Vandersypen L M K and Kouwenhoven L P 2004 Nature 430 431
|
[3] |
Zhang J F, Mao W, Zhang J C and Hao Yue 2008 Chin. Phys. B 17 2689
|
[4] |
Veldhorst M, Hwang J C C, Yang C H, Leenstra A W, Ronde B D, Dehollain J P, Muhonen J T, Hudson F E, Itoh K M, Morello A and Dzurak A S 2014 Nat. Nanotechnol. 9 981
|
[5] |
Maurand R, Jehl X, Kotekar-Patil D, Corna A, Bohuslaveskyi H, Lavieville R, Hutin L, Barraud S, Vinet M, Sanquer M and Franceschi S D 2016 Nat Commun. 7 13575
|
[6] |
Boeuf F, Jehl X, Sanquer M and Skotnicki T 2003 IEEE Trans. Nano. 2 144
|
[7] |
Liu Y, Liu K, Chen R S, Liu Y R, En Y F, Li B and Fang W X 2017 Chin. Phys. Lett. 34 18501
|
[8] |
Zheng J J, Wang Y R, Yu K H, Xu X X, Sheng X X, Hu E T and Wei W 2018 Acta Phys. Sin. 67 118502 (in Chinese)
|
[9] |
Beckers A, Jazaeri F, Bohuslavskyi H, Hutin L, Franceschi S D and Enz C 2019 Solid-State Electron. 159 106
|
[10] |
Franceschi S D, Hutin L, Maurand R, Bourdet L, Bohuslavskyi H, Corna A, Kotekar-Patil D, Barraud S, Jehl X, Niquet Y M, Sanquer M and Vinet M 2017 2017 IEEE IEDM Tech. Dig. America, p. 13.4.1
|
[11] |
Gopi Krishna S, Sarvesh D and Pramod Kumar T 2015 Chin. Phys. B 24 108505
|
[12] |
Ya-Mei D, Wei-Hua H, Yang-Yan G, Xiao-Song Z, Xiao-Di Z, Xin-Yu W and Fu-Hua Yang 2019 Chin. Phys. B 28 066804
|
[13] |
Bohuslavskyi H, Barraud S, Casse M, Barral V, Bertrand B, Hutin L, Arnaud F, Galy P, Sanquer M, Franceschi S D and Vinet M 2017 Silicon Nan electronics Workshop (SNW), June, 2017 Japan, p. 143
|
[14] |
Galy P, Camirand Lemyre J, Lemieux P, Arnaud F, Drouin D and Pioro-Ladriere A M 2018 J. Electron. Dev. Soc. 6 594
|
[15] |
Incandela R M, Song L, Homulleet H, Charbon E, Vladimirescu A and Sevastiano F 2018 J. Electron. Dev. Soc. 6 996
|
[16] |
Beckers A, Jazaeri F, Bohuslavskyi H, Hutin, L, De Franceschi S and Enz C 2018 Joint International EUROSOI Workshop and International Conference on Ultimate Integration on Silicon (EUROSOI-ULIS), March, 2018 p. 1
|
[17] |
Jazaeri F, Beckers A, Tajalli A and Sallese J M 2019 International Conference Mixed Design of Integrated Circuits and Systems (MIXDES), August 2019 p. 15
|
[18] |
Zhao X S, Han W H, Guo Y Y, Dou Y M and Yang F H 2018 Chin. Phys. B 27 097310
|
[19] |
Gao Z Z, Hou P F, Guo H X, Li B, Song H J, Wang J B and Zhong X L 2019 Acta Phys. Sin. 68 048501 (in Chinese)
|
[20] |
Wu H, Duan B X, Yang L Y and Yang Y T 2019 Chin. Phys. B 28 027302
|
[21] |
Chen W Z, Huang Y, He L J, Han Z S and Huang Y 2018 Chin. Phys. B 27 088501
|
[22] |
Shao Y and Ding S J 2018 Acta Phys. Sin. 67 098502 (in Chinese)
|
[23] |
Wen Z X, Zhang F, Shen Z W, Chen J, He Y W, Yan G G, Liu X F, Zhao W S, Wang L, Sun G S and Zeng Y P 2019 Chin. Phys. B 28 068504
|
[24] |
Han T C, Zhao H D and Peng X C 2019 Chin. Phys. B 28 047302
|
[25] |
Zhou X Y, Lv Y J, Tan X, Wang Y G, Song X B, He Z Z, Zhang Z R, Liu Q B, Han T T, Fang Y L and Feng Z H 2018 Acta Phys. Sin. 67 178501 (in Chinese)
|
[26] |
Yang W, Song J J and Ren Y 2018 Acta Phys. Sin. 67 198502 (in Chinese)
|
[27] |
Mao S J, Zhu Z Y, Wang G L, Zhu H L, Li J F and Zhao C 2016 Chin. Phys. Lett. 33 118502
|
[28] |
Gámiz F 2004 Semicond. Sci. Technol. 19 113
|
[29] |
Zhao Y, Takenaka M and Takagi S 2009 Electron. Dev. Lett. 30 987
|
[30] |
Hafez I M, Ghibaudo G and Balestra F 2018 J. Appl. Phys. 67 1950
|
[31] |
Chang P Y, Liu X Y, Zeng L and Du G 2015 Solid-State Electron. 113 68
|
[32] |
Chang P Y, Liu X Y, Zeng L, Wei K L and Du G 2015 Trans. Electron. Devices 62 947
|
[33] |
Fischetti M V, Ren Z, Solomon P M, Yang M and Rim K 2003 J. Appl. Phys. 94 1079
|
[34] |
Esseni D, Palestri P and Selmi L 2011 Nanoscale MOS Transis-tors: Semi-Classical Transport and Applications (Cambridge: Cambridge University Press) p. 156
|
[35] |
Chang P Y, Liu X Y, Di S Y and Du G 2017 Trans. Electron. Devices 64 1053
|
[36] |
Gámiz F, Roldan J B, Carceller J E and Cartujo P 2003 Appl. Phys. Lett. 82 3151
|
[37] |
Gámiz F, Jimenez-Molinos F, Roldan J B and Cartujo-Cassinello P 2002 Appl. Phys. Lett. 80 3835
|
[38] |
Gámiz F, López-Villanueva J A, Jiménez-Tejada J A, Melchor I and Palma A 1994 J. Appl. Phys. 75 924
|
[39] |
Takagi S, Toriumi A, Iwase M and Tango H 1994 IEEE Trans. Electron. Devices 41 2357
|
[40] |
Koga J, Takagi S and Toriumi A 2002 IEEE Trans. Electron. Devices 49 1042
|
[41] |
Schmidt M, Mollenhauer T, Gottlob H D B, Wahlbrink T, Efavi J K, Ottaviano L, Cristoloveanu S, Lemme M C and Kurz H 2005 Microelectron. Eng. 82 497
|
[42] |
Esseni D, Abramo A, Selmi L and Sangiorgi E 2003 IEEE Trans. Electron. Devices 50 2445
|
[43] |
Uchida K, Watanabe H, Koga J, Kinoshita A and Takagi S 2003 International Conference on Simulation of Semiconductor Processes & Devices 2003 p. 8
|
[44] |
Fsichetti M V and Laux S E 1996 J. Appl. Phys. 80 2234
|
[45] |
Wang E X, Matagne P, Shifren L, Obradovic B, Kotlyar R, Cea S, Stettler M and Giles M D 2006 IEEE Trans. Electron. Devices 53 1840
|
[46] |
Oberhuber R, Zandler G and Vogl P 1998 Phys. Rev. B 58 9941
|
[47] |
Yokoyama K and Hess K 1986 Phys. Rev. B 33 5595
|
[48] |
Koba S, Ishida R, Kubota Y, Tsuchiya H, Kamakura Y, Mori N and Ogawa M 2014 J. J. Appl. Phys. 53 114301
|
[49] |
Stern F 1980 Phys. Rev. Lett. 44 1469
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|