Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 028802    DOI: 10.1088/1674-1056/ab6656
Special Issue: TOPICAL REVIEW — Advanced calculation & characterization of energy storage materials & devices at multiple scale
TOPICAL REVIEW—Advanced calculation & characterization of energy storage materials & devices at multiple scale Prev   Next  

Pair distribution function analysis: Fundamentals and application to battery materials

Xuelong Wang(王雪龙), Sha Tan(谭莎), Xiao-Qing Yang(杨晓青), Enyuan Hu(胡恩源)
Chemistry Division, Brookhaven National Laboratory, Upton 11973, USA
Abstract  Battery materials are of vital importance in powering a clean and sustainable society. Improving their performance relies on a clear and fundamental understanding of their properties, in particular, structural properties. Pair distribution function (PDF) analysis, which takes into account both Bragg scattering and diffuse scattering, can probe structures of both crystalline and amorphous phases in battery materials. This review first introduces the principle of PDF, followed by its application in battery materials. It shows that PDF is an effective tool in studying a series of key scientific topics in battery materials. They range from local ordering, nano-phase quantification, anion redox reaction, to lithium storage mechanism, and so on.
Keywords:  battery materials      pair distribution function (PDF)  
Received:  20 November 2019      Revised:  29 December 2019      Accepted manuscript online: 
PACS:  88.80.ff (Batteries)  
Corresponding Authors:  Enyuan Hu     E-mail:  enhu@bnl.gov

Cite this article: 

Xuelong Wang(王雪龙), Sha Tan(谭莎), Xiao-Qing Yang(杨晓青), Enyuan Hu(胡恩源) Pair distribution function analysis: Fundamentals and application to battery materials 2020 Chin. Phys. B 29 028802

[1] Larcher D and Tarascon J M 2015 Nat. Chem. 7 19
[2] https://www.nobelprize.org/prizes/chemistry/2019/press-release/
[3] Hu E, Wang X, Yu X and Yang X Q 2018 Acc. Chem. Res. 51 290
[4] Rong X, Hu E, Lu Y, Meng F, Zhao C, Wang X, Zhang Q, Yu X, Gu L, Hu Y S, Li H, Huang X, Yang X Q, Delmas C and Chen L 2019 Joule 3 503
[5] Hu E, Bak S M, Liu J, Yu X, Zhou Y, Ehrlich S N, Yang X Q and Nam K W 2014 Chem. Mater. 26 1108
[6] Zhou Y N, Ma J, Hu E, Yu X, Gu L, Nam K W, Chen L, Wang Z and Yang X Q 2014 Nat. Commun. 5 5381
[7] Liu D, Shadike Z, Lin R, Qian K, Li H, Li K, Wang S, Yu Q, Liu M, Ganapathy S, Qin X, Yang Q H, Wagemaker M, Kang F, Yang X Q and Li B 2019 Adv. Mater. 31 1806620
[8] Zhu H, Huang Y, Zhu H, Wang L, Lan S, Xia X and Liu Q 2019 Small Methods 1900223
[9] Liang G, Didier C, Guo Z, Pang W K and Peterson V K 2019 Adv. Mater. 1904528
[10] Li L, Xie Y, Maxey E and Harder R 2019 J. Synchrotron Radiat. 26 220
[11] Ren Y and Zuo X 2018 Small Methods 2 1800064
[12] Jung W I, Nagao M, Pitteloud C, Itoh K, Yamada A and Kanno R 2009 J. Mater. Chem. 19 800
[13] Laveda J V, Johnston B, Paterson G W, Baker P J, Tucker M G, Playford H Y, Jensen K M O, Billinge S J L and Corr S A 2018 J. Mater. Chem. A 6 127
[14] Zhu H, Li Q, Ren Y, Fan L, Chen J, Deng J and Xing X 2016 Adv. Mater. 28 6894
[15] Zhu H, Li Q, Yang C, Zhang Q, Ren Y, Gao Q, Wang N, Lin K, Deng J, Chen J, Gu L, Hong J and Xing X 2018 J. Am. Chem. Soc. 140 7403
[16] Hua X, Robert R, Du L S, Wiaderek K M, Leskes M, Chapman K W, Chupas P J and Grey C P 2014 J. Phys. Chem. C 118 15169
[17] Hu Y Y, Liu Z, Nam K W, Borkiewicz O J, Cheng J, Hua X, Dunstan M T, Yu X, Wiaderek K M, Du L S, Chapman K W, Chupas P J, Yang X Q and Grey C P 2013 Nat. Mater. 12 1130
[18] Bréger J, Kang K, Cabana J, Ceder G and Grey C P 2007 J. Mater. Chem. 17 3167
[19] Pigliapochi R, Seymour I D, Merlet C, Pell A J, Murphy D T, Schmid S and Grey C P 2018 Chem. Mater. 30 817
[20] Zeng D, Cabana J, Bréger J, Yoon W S and Grey C P 2007 Chem. Mater. 19 6277
[21] Zhang M J, Teng G, Chen-Wiegart Y K, Duan Y, Ko J Y P, Zheng J, Thieme J, Dooryhee E, Chen Z, Bai J, Amine K, Pan F and Wang F 2018 J. Am. Chem. Soc. 140 12484
[22] Ma J, Bo S H, Wu L, Zhu Y, Grey C P and Khalifah P G 2015 Chem. Mater. 27 2387
[23] Bréger J, Dupré N, Chupas P J, Lee P L, Proffen T, Parise J B and Grey C P 2005 J. Am. Chem. Soc. 127 7529
[24] Zhang Z, Zhang M, Wang Y, Tan Q, Lv X, Zhong Z, Li H and Su F 2013 Nanoscale 5 5384
[25] Lee J H, Kim W J, Kim J Y, Lim S H and Lee S M 2008 J. Power Sources 176 353
[26] Allan P K, Griffin J M, Darwiche A, Borkiewicz O J, Wiaderek K M, Chapman K W, Morris A J, Chupas P J, Monconduit L and Grey C P 2016 J. Am. Chem. Soc. 138 2352
[27] Krauskopf T, Culver S P and Zeier W G 2018 Chem. Mater. 30 1791
[28] Lin R, Hu E, Liu M, Wang Y, Cheng H, Wu J, Zheng J C, Wu Q, Bak S, Tong X, Zhang R, Yang W, Persson K A, Yu X, Yang X Q and Xin H L 2019 Nat. Commun. 10 1650
[29] Narten A H, Vaslow F and Levy H A 1973 J. Chem. Phys. 58 5017
[30] Ohara K, Mitsui A, Mori M, Onodera Y, Shiotani S, Koyama Y, Orikasa Y, Murakami M, Shimoda K, Mori K, Fukunaga T, Arai H, Uchimoto Y and Ogumi Z 2016 Sci. Rep. 6 21302
[31] Shadike Z, Lee H S, Tian C, Sun K, Song L, Hu E, Waluyo I, Hunt A, Ghose S, Hu Y, Zhou J, Wang J, Northrup P, Bak S M and Yang X Q 2019 Adv. Energy Mater. 9 1900705
[32] Slawiński W A, Playford H Y, Hull S, Norberg S T, Eriksson S G, Gustafsson T, Edström K and Brant W R 2019 Chem. Mater. 31 5024
[33] Uhlig H, Hoffmann M J, Lamparter H P, Aldinger F, Bellissent R and Steeb S 1996 J. Am. Ceram. Soc. 79 2833
[34] Zhao E, He L, Wang B, Li X, Zhang J, Wu Y, Chen J, Zhang S, Liang T, Chen Y, Yu X, Li H, Chen L, Huang X, Chen H and Wang F 2019 Energy Storage Mater. 16 354
[35] Lyu Y, Hu E, Xiao D, Wang Y, Yu X, Xu G, Ehrlich S N, Amine K, Gu L, Yang X Q and Li H 2017 Chem. Mater. 29 9053
[36] Debye P 1915 Ann. Phys. 351 809
[37] Zernike F and Prins J A 1927 Z. Phys. A Hadrons Nuclei 41 184
[38] Keen D A 2001 J. Appl. Crystallogr. 34 172
[39] Chapman K W 2016 MRS Bull. 41 231
[40] Radhakrishnan A N, Rao P P, Linsa K S, Deepa M and Koshy P 2011 Dalton Trans. 40 3839
[41] Liu H, Chen Y, Hy S, An K, Venkatachalam S, Qian D, Zhang M and Meng Y S 2016 Adv. Energy Mater. 6 1502143
[42] Nagler S E, Stoica A D, Stoica G M, An K, Skorpenske H D, Rios O, Hendin D B and Bower N W 2019 J. Anal. Methods. Chem. 6164058
[43] Billinge S J L 2019 Philos Trans. A Math. Phys. Eng. Sci. 377 20180413
[44] Li H, Huang X, Chen L, Zhou G, Zhang Z, Yu D, Jun Mo Y and Pei N 2000 Solid State Ion. 135 181
[45] Aric A S, Bruce P, Scrosati B, Tarascon J M and Van Schalkwijk W 2010 Materials for Sustainable Energy (London: Co-Published with Macmillan Publishers Ltd) pp. 148-159
[46] Key B, Morcrette M, Tarascon J M and Grey C P 2011 J. Am. Chem. Soc. 133 503
[47] Li L, Meng F and Jin S 2012 Nano Lett. 12 6030
[48] Wiaderek K M, Borkiewicz O J, Castillo-Martinez E, Robert R, Pereira N, Amatucci G G, Grey C P, Chupas P J and Chapman K W 2013 J. Am. Chem. Soc. 135 4070
[49] Fan X, Hu E, Ji X, Zhu Y, Han F, Hwang S, Liu J, Bak S, Ma Z, Gao T, Liou S C, Bai J, Yang X Q, Mo Y, Xu K, Su D and Wang C 2018 Nat. Commun. 9 2324
[50] Sathiya M, Rousse G, Ramesha K, Laisa C P, Vezin H, Sougrati M T, Doublet M L, Foix D, Gonbeau D, Walker W, Prakash A S, Ben Hassine M, Dupont L and Tarascon J M 2013 Nat. Mater. 12 827
[51] McCalla E, Sougrati M T, Rousse G, Berg E J, Abakumov A, Recham N, Ramesha K, Sathiya M, Dominko R, Van Tendeloo G, Novák P and Tarascon J M 2015 J. Am. Chem. Soc. 137 4804
[52] Li B and Xia D 2017 Adv. Mater. 29 1701054
[53] Saubanére M, McCalla E, Tarascon J M and Doublet M L 2016 Energy Environ. Sci. 9 984
[54] Rong X, Liu J, Hu E, Liu Y, Wang Y, Wu J, Yu X, Page K, Hu Y S, Yang W, Li H, Yang X Q, Chen L and Huang X 2018 Joule 2 125
[55] Zhao E, Li Q, Meng F, Liu J, Wang J, He L, Jiang Z, Zhang Q, Yu X, Gu L, Yang W, Li H, Wang F and Huang X 2019 Angew. Chem. Int. Ed. Engl. 58 4323
[56] Idemoto Y, Narai H and Koura N 2003 J. Power Sources 119-121 125
[57] Zhong Q, Bonakdarpour A, Zhang M, Gao Y and Dahn J R 1997 J. Electrochem. Soc. 144 205
[58] Kim J H, Myung S T, Yoon C S, Kang S G and Sun Y K 2004 Chem. Mater. 16 906
[59] Liu J, Huq A, Moorhead-Rosenberg Z, Manthiram A and Page K 2016 Chem. Mater. 28 6817
[60] Farrow C L, Juhas P, Liu J W, Bryndin D, Božin E S, Bloch J, Proffen T and Billinge S J L 2007 J. Phys.: Condens. Matter 19 335219
[61] McGreevy R L 2001 J. Phys.: Condens. Matter 13 R877
[62] Playford H Y, Owen L R, Levin I and Tucker M G 2014 Annu. Rev. Mater. Res. 44 429
[63] Proffen T and Kim H 2009 J. Mater. Chem. 19 5078
[64] Shoemaker D P, Li J and Seshadri R 2009 J. Am. Chem. Soc. 131 11450
[65] Fujii K, Matsugami M, Ueno K, Ohara K, Sogawa M, Utsunomiya T and Morita M 2017 J. Phys. Chem. C 121 22720
[1] Computational screening of doping schemes for LiTi2(PO4)3 as cathode coating materials
Yu-Qi Wang(王宇琦), Xiao-Rui Sun(孙晓瑞), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2020, 29(3): 038202.
[2] Discovery and design of lithium battery materials via high-throughput modeling
Xuelong Wang(王雪龙), Ruijuan Xiao(肖睿娟), Hong Li(李泓), Liquan Chen(陈立泉). Chin. Phys. B, 2018, 27(12): 128801.
[3] High-throughput theoretical design of lithium battery materials
Shi-Gang Ling(凌仕刚), Jian Gao(高健), Rui-Juan Xiao(肖睿娟), Li-Quan Chen(陈立泉). Chin. Phys. B, 2016, 25(1): 018208.
No Suggested Reading articles found!