Please wait a minute...
Chin. Phys. B, 2020, Vol. 29(2): 020701    DOI: 10.1088/1674-1056/ab5fc3
GENERAL Prev   Next  

Doppler radial velocity detection based on Doppler asymmetric spatial heterodyne spectroscopy technique for absorption lines

Yin-Li Kuang(况银丽)1,2, Liang Fang(方亮)1, Xiang Peng(彭翔)1, Xin Cheng(程欣)1, Hui Zhang(张辉)1, En-Hai Liu(刘恩海)1
1 Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, China;
2 University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  Doppler asymmetric spatial heterodyne spectroscopy (DASH) technique has developed rapidly in passive Doppler-shift measurements of atmospheric emission lines over the last decade. With the advantages of high phase shift sensitivity, compact, and rugged structure, DASH is proposed to be used for celestial autonomous navigation based on Doppler radial velocity measurement in this work. Unlike atmospheric emission lines, almost all targeted lines in the research field of deep-space exploration are the absorption lines of stars, so a mathematical model for the Doppler-shift measurements of absorption lines with a DASH interferometer is established. According to the analysis of the components of the interferogram received by the detector array, we find that the interferogram generated only by absorption lines in a passband can be extracted and processed by a method similar to the approach to studying the emission lines. In the end, numerical simulation experiments of Doppler-shift measurements of absorption lines are carried out. The simulation results show that the relative errors of the retrieved speeds are less than 0.7% under ideal conditions, proving the feasibility of measuring Doppler shifts of absorption lines by DASH instruments.
Keywords:  Doppler asymmetric spatial heterodyne spectroscopy (DASH)      Doppler-shift measurement      absorption line      celestial autonomous navigation  
Received:  27 September 2019      Revised:  20 November 2019      Accepted manuscript online: 
PACS:  07.60.Ly (Interferometers)  
  42.87.Bg (Phase shifting interferometry)  
  47.80.Cb (Velocity measurements)  
Fund: Project supported by the National Basic Research Program of China (Grant No. 2014CB744204).
Corresponding Authors:  Liang Fang     E-mail:  fangl@ioe.ac.cn

Cite this article: 

Yin-Li Kuang(况银丽), Liang Fang(方亮), Xiang Peng(彭翔), Xin Cheng(程欣), Hui Zhang(张辉), En-Hai Liu(刘恩海) Doppler radial velocity detection based on Doppler asymmetric spatial heterodyne spectroscopy technique for absorption lines 2020 Chin. Phys. B 29 020701

[1] Antreasian P G, Baird D T, Border J S, Burckhart P, Graat E J, Jah M K, Mase R A, McElrath T P and Portock B M 2005 J. Spacecr. Rockets 42 394
[2] Ryne M, Graat E, Kruizinga G, Lau E, Martin-Mur T, Nandi S, Portock B, Haw R and McElrath T 2008 AIAA/AAS Astrodynamics Specialist Conference and Exhibit, August 18-21, 2008, Honolulu, Hawaii, USA, p. 7215
[3] Kikuchi F, Kono Y, Yoshikawa M, Sekido M, Ohnishi M, Murata Y, Ping J, Liu Q, Matsumoto K and Asari K 2004 Earth Planets Space 56 1041
[4] Zhang W, Chen X, You W, Zhang W and Fang B D 2013 Aerosp. Shanghai 30 32 (in Chinese)
[5] Woodman O J 2007 "An Introduction Inertial Navigation", University Cambridge, Computer Laboratory, 2007
[6] Kubota T, Hashimoto T, Sawai S, Kawaguchi J I, Ninomiya K, Uo M and Baba K 2003 Acta Astronaut. 52 125
[7] Marini A E, Racca G D and Foing B 2002 Adv. Space Res. 30 1895
[8] Bhaskaran S 2012 Proceedings of the SpaceOps 2012 Conference, June 11-15, 2012, Stockholm, Sweden, p. 1267135
[9] Hays P B, Abreu V J, Dobbs M E, Gell D A, Grassl H J and Skinner W R 1993 J. Geophys. Res. Atmos. 98 10713
[10] Killeen T L, Wu Q, Solomon S, Ortland D, Skinner W, Niciejewski R and Gell D 2006 J. Geophys. Res. (Space Phys.) 111 A10S01
[11] Shepherd G G, Thuillier G, Gault W, Solheim B, Hersom C, Alunni J, Brun J F, Brune S, Charlot P and Cogger L 1993 J. Geophys. Res. Atmos. 98 10725
[12] Gault W, Brown S, Moise A, Liang D, Sellar G, Shepherd G and Wimperis J 1996 Appl. Opt. 35 2913
[13] Thuillier G and Shepherd G G 1985 Appl. Opt. 24 1599
[14] Thuillier G and Hersé M 1991 Appl. Opt. 30 1210
[15] Tang Y H, Cui J, Gao H Y, Qu O Y, Duan X D, Li C X and Liu L N 2017 Acta Phys. Sin. 66 130601 (in Chinese)
[16] Zhang C M and Zhu L Y 2010 Acta Phys. Sin. 59 989 (in Chinese)
[17] Mu T K and Zhang C M 2010 Chin. Phys. B 19 060702
[18] Englert C R, Harlander J M, Babcock D D, Stevens M H, Siskind D E 2016 Proceedings of the Atmospheric Optical Modeling, Measurement and Simulation II, August 13-17, 2006, San Diego, California, USA p. 63030T
[19] Harlander J M, Englert C R, Babcock D D and Roesler F L 2010 Opt. Express 18 26430
[20] Englert C R, Harlander J M, Emmert J T, Babcock D D and Roesler F L 2010 Opt. Express 18 27416
[21] Babcock D, Harlander J, Englert C, Roesler F, Pedersen T and Feldman R 2009 Proceedings of the AGU Fall Meeting, December 14-18, 2009, San Francisco, California, USA, pp. SA53A-1251
[22] Babcock D D 2011 "Deveopment of a Space Flight Prototype Doppler Asymmetric Spatial Heterodyne (DASH) Spectrometer for the Measurement of Upper Atmospheric Winds", ARTEP INC ELLICOTT CITY MD, 2011
[23] Babcock D, Harlander J, Englert C, Roesler F, Pedersen T and Feldman R 2017 Appl. Opt. 56 2090
[24] Englert C R, Brown C M, Bach B, Bach E, Bach K, Harlander J M, Seely J F, Marr K D and Miller I 2017 Appl. Opt. 56 2090
[25] Englert C R, Harlander J M, Brown C M, Marr K D, Miller I J, Stump J E, Hancock J, Peterson J Q, Kumler J and Morrow W H 2017 Space Sci. Rev. 212 553
[26] Harlander J M, Englert C R, Brown C M, Marr K D, Miller I J, Zastera V, Bach B W and Mende S B 2017 Space Sci. Rev. 212 601
[27] Harding B J, Makela J J, Englert C R, Marr K D, Harlander J M, England S L and Immel T J 2017 Space Sci. Rev. 212 585
[28] Englert C R, Babcock D D and Harlander J M 2007 Appl. Opt. 46 7297
[29] KuangY L, Fang L, Peng X, Cheng X, Zhang H and Liu E H 2018 Acta Phys. Sin. 67 140703 (in Chinese)
[1] Absorption linewidth inversion with wavelength modulation spectroscopy
Yue Yan(颜悦), Zhenhui Du(杜振辉), Jinyi Li(李金义), Ruixue Wang(王瑞雪). Chin. Phys. B, 2018, 27(2): 024205.
No Suggested Reading articles found!