Please wait a minute...
Chin. Phys. B, 2019, Vol. 28(11): 114202    DOI: 10.1088/1674-1056/ab457b
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Analytic solutions for generalized PT-symmetric Rabi models

Yuanhao Dong(董元浩)1, Wen-Jing Zhang(张文静)2, Jing Liu(刘静)1, Xiao-Tao Xie(谢小涛)1
1 School of Physics and Information Technology, Shaanxi Normal University, Xi'an 710119, China;
2 School of Physics, Northwest University, Xi'an 710069, China
Abstract  We theoretically investigate the exact solutions for generalized parity-time(PT)-reversal-symmetric Rabi models driven by external fields with monochromatic periodic, linear, and parabolic forms, respectively. The corresponding exact solutions are presented in terms of the confluent Heun equations without any approximation. In principle, the analytic solutions derived here are valid in the whole parameter space. Such a kind of study may offer potential coherent control schemes of the PT-symmetric two-level systems.
Keywords:  Rabi model      PT symmetry      population dynamics  
Received:  11 June 2019      Revised:  06 September 2019      Accepted manuscript online: 
PACS:  42.50.-p (Quantum optics)  
  42.25.Bs (Wave propagation, transmission and absorption)  
  11.30.Er (Charge conjugation, parity, time reversal, and other discrete symmetries)  
Fund: Project supported in part by the National Natural Science Foundation of China (Grant No. 11874251), the Scientific Research Starting Foundation of Shaanxi Normal University, China, and the Scientific Research Plan Funded by the Education Department of Shaanxi Province, China (Grant No. 17JK0786).
Corresponding Authors:  Wen-Jing Zhang, Xiao-Tao Xie     E-mail:  wjzhang@nwu.edu.cn;xtxie@snnu.edu.cn

Cite this article: 

Yuanhao Dong(董元浩), Wen-Jing Zhang(张文静), Jing Liu(刘静), Xiao-Tao Xie(谢小涛) Analytic solutions for generalized PT-symmetric Rabi models 2019 Chin. Phys. B 28 114202

[36] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[1] Bender C M and Boettcher S 1998 Phys. Rev. Lett. 80 5243
[37] Shirley J H 1965 Phys. Rev. 138 B979
[2] Bender C M 2007 Rep. Prog. Phys. 70 947
[38] Grifoni M and Hänggi P 1998 Phys. Rep. 304 229
[3] Makris K G, El-Ganainy R, Christodoulides D N and Musslimani Z H 2008 Phys. Rev. Lett. 100 103904
[39] Yan Y, Lü Z and Zheng H 2015 Phys. Rev. A 91 053834
[4] El-Ganainy R, Makris K G, Christodoulides D N and Musslimani Z H 2007 Opt. Lett. 32 2632
[40] Lü Z G and Zheng H 2012 Phys. Rev. A 86 023831
[5] Chang L, Jiang X, Hua S, Yang C, Wen J, Jiang L, Li G, Wang G and Xiao M 2014 Nat. Photon. 8 524
[41] Shahverdyan T A, Ishkhanyan T A, Grigoryan A E and Ishkhanyan A M 2015 J. Contemp. Phys. 50 211
[6] Wu J and Xie X T 2012 Phys. Rev. A 86 032112
[7] Li X and Xie X T 2014 Phys. Rev. A 90 033804
[42] Ishkhanyan A M and Grigoryan A E 2014 arXiv:1402.1330[physics.atom-ph]
[8] Li K and Kevrekidis P G 2011 Phys. Rev. E 83 066608
[43] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[9] Guo A, Salamo G J, Duchesne D, Morandotti R, Volatier-Ravat M, Aimez V, Siviloglou G A and Christodoulides D N 2009 Phys. Rev. Lett. 103 093902
[44] Zener C 1932 Proc. R. Soc. London, Ser. A 137 696
[10] Ruter C E, Makris K G, El-Ganainy R, Christodoulides D N, Segev M and Kip D 2010 Nat. Phys. 6 192
[11] Allen L and Eberly J H 1987 Optical Resonance and Two-level Atoms (New York:Dover Publications Inc.)
[12] Longhi S 2006 J. Phys. B:At. Mol. Opt. Phys. 39 1985
[13] Noel M W, Griffith W M and Gallagher T F 1998 Phys. Rev. A 58 2265
[14] Yang X and Wu Y 2006 J. Phys. B:At. Mol. Opt. Phys. 39 2285
[15] Wu Y and Yang X 2007 Phys. Rev. Lett. 98 013601
[16] Barnes E and Sarma S D 2012 Phys. Rev. Lett. 109 060401
[17] Xie Q and Hai W 2010 Phys. Rev. A 82 032117
[18] Zhong H, Xie Q, Batchelor M and Lee C 2013 J. Phys. A:Math. Theor. 46 415302
[19] Xie Q, Zhong H, Batchelor M and Lee C 2017 J. Phys. A:Math. Theor. 50 113001
[20] Zhang W J, Jin K, Jin L L and Xie X T 2016 Phys. Rev. A 93 043840
[21] Zhong H H, Xie Q T, Guan X W, Batchelor M T, Gao K L and Lee C H 2014 J. Phys. A:Math. Theor. 47 045301
[22] Forn-Díaz P, Lamata L, Rico E, Kono J and Solano E 2019 Rev. Mod. Phys. 91 025005
[23] Mao B B, Liu M X, Wu W, Li L S, Ying Z J and Luo H G 2018 Chin. Phys. B 27 054219
[24] Joglekar Y N, Marathe R, Durganandini P and Pathak R K 2014 Phys. Rev. A 90 040101
[25] Lee T E and Joglekar Y N 2015 Phys. Rev. A 92 042103
[26] Wu Y, Zhu B, Hu S F, Zhou Z and Zhong H H 2017 Front. Phys. 12 121102
[27] Lian X, Zhong H H, Xie Q T, Zhou X Q, Wu Y W and Liao W H 2014 Eur. Phys. J. D 68 189
[28] Moiseyev N 2011 Phys. Rev. A 83 052125
[29] Chitsazi M, Li H, Ellis F M and Kottos T 2017 Phys. Rev. Lett. 119 093901
[30] Gong J and Wang Q H 2015 Phys. Rev. A 91 042135
[31] Luo X, Yang B, Zhang X, Li L and Yu X 2017 Phys. Rev. A 95 052128
[32] Olver F W J, Lozier D W, Boisvert R F and Clark C W 2010 NIST Handbook of Mathematical Functions (New York:Cambridge University Press)
[33] Heun K 1889 Math. Ann. 33 161
[34] Scully M O and Zubairy M S 1997 Quantum Optics (Cambridge:Cambridge University Press)
[35] Salwen H 1955 Phys. Rev. 99 1274
[36] Bloch F and Siegert A 1940 Phys. Rev. 57 522
[37] Shirley J H 1965 Phys. Rev. 138 B979
[38] Grifoni M and Hänggi P 1998 Phys. Rep. 304 229
[39] Yan Y, Lü Z and Zheng H 2015 Phys. Rev. A 91 053834
[40] Lü Z G and Zheng H 2012 Phys. Rev. A 86 023831
[41] Shahverdyan T A, Ishkhanyan T A, Grigoryan A E and Ishkhanyan A M 2015 J. Contemp. Phys. 50 211
[42] Ishkhanyan A M and Grigoryan A E 2014 arXiv:1402.1330[physics.atom-ph]
[43] Landau L D 1932 Phys. Z. Sowjetunion 2 46
[44] Zener C 1932 Proc. R. Soc. London, Ser. A 137 696
[1] Hidden symmetry operators for asymmetric generalized quantum Rabi models
Xilin Lu, Zi-Min Li, Vladimir V Mangazeev, and Murray T Batchelor. Chin. Phys. B, 2022, 31(1): 014210.
[2] Quantum exceptional points of non-Hermitian Hamiltonian and Liouvillian in dissipative quantum Rabi model
Xianfeng Ou(欧先锋), Jiahao Huang(黄嘉豪), and Chaohong Lee(李朝红). Chin. Phys. B, 2021, 30(11): 110309.
[3] Unified approach to various quantum Rabi models witharbitrary parameters
Xiao-Fei Dong(董晓菲), You-Fei Xie(谢幼飞), Qing-Hu Chen(陈庆虎). Chin. Phys. B, 2020, 29(2): 020302.
[4] An analytical variational method for the biased quantum Rabi model in the ultra-strong coupling regime
Bin-Bin Mao(毛斌斌), Maoxin Liu(刘卯鑫), Wei Wu(吴威), Liangsheng Li(李粮生), Zu-Jian Ying(应祖建), Hong-Gang Luo(罗洪刚). Chin. Phys. B, 2018, 27(5): 054219.
[5] Dynamics of two arbitrary qubits strongly coupled to a quantum oscillator
Kun Dong(董锟). Chin. Phys. B, 2016, 25(12): 124202.
[6] Dynamics of Rabi model under second-order Born–Oppenheimer approximation
Wang Zhi-Hai (王治海), Zhou Duan-Lu (周端陆). Chin. Phys. B, 2013, 22(11): 114205.
[7] Vibrational relaxation dynamics in transient grating spectroscopy studied by rate equations based on time-dependent correlation function
Yu Guo-Yang(于国洋), Song Yun-Fei(宋云飞), He Xing(何兴), Zheng Xian-Xu(郑贤旭), Tan Duo-Wang(谭多旺), Chen Jun(陈军), and Yang Yan-Qiang(杨延强) . Chin. Phys. B, 2012, 21(4): 043402.
No Suggested Reading articles found!