INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY |
Prev
Next
|
|
|
Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires |
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟) |
Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, School of Physics and Electronic Science, Hunan University, Changsha 410082, China |
|
|
Abstract Bandgap engineering of semiconductor nanomaterials is critical for their applications in nanoelectronics, optoelectronics, and photonics. Here we report, for the first time, the growth of single-crystalline quaternary alloyed Ga0.75In0.25As0.49Sb0.51 nanowires via a chemical-vapor-deposition method. The synthesized nanowires have a uniform composition distribution along the growth direction, with a zinc-blende structure. In the photoluminescence investigation, these quaternary alloyed semiconductor nanowires show a strong band edge light emission at 1950 nm (0.636 eV). Photodetectors based on these alloy nanowires show a strong light response in the near-infrared region (980 nm) with the external quantum efficiency of 2.0×104% and the responsivity of 158 A/W. These novel near-infrared photodetectors may find promising applications in integrated infrared photodetection, information communication, and processing.
|
Received: 27 December 2017
Revised: 11 April 2018
Accepted manuscript online:
|
PACS:
|
81.07.Gf
|
(Nanowires)
|
|
74.70.Dd
|
(Ternary, quaternary, and multinary compounds)
|
|
85.60.Gz
|
(Photodetectors (including infrared and CCD detectors))
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 51525202, 61505051, 1137049, 61474040, and 61635001), the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province, China, and the Fundamental Research Funds for the Central Universities, China. |
Corresponding Authors:
Xiao-Li Zhu, Xiu-Juan Zhuang
E-mail: zhuxiaoli@hnu.edu.cn;zhuangxj@hnu.edu.cn
|
Cite this article:
Meng-Zi Li(李梦姿), Xin-Liang Chen(陈新亮), Hong-Lai Li(李洪来), Xue-Hong Zhang(张学红), Zhao-Yang Qi(祁朝阳), Xiao-Xia Wang(王晓霞), Peng Fan(范鹏), Qing-Lin Zhang(张清林), Xiao-Li Zhu(朱小莉), Xiu-Juan Zhuang(庄秀娟) Optoelectronic properties of single-crystalline GaInAsSb quaternary alloy nanowires 2018 Chin. Phys. B 27 078101
|
[1] |
Feng J G, Jiang X Y, Yan X Y, Wu Y C, Su B, Fu H B, Yao J N and Jiang L 2017 Adv. Mater. 29 1603652
|
[2] |
Zhang Q L, Wang S W, Liu X X, Chen T R, Li H F, Liang J W, Zheng W H Agarwal R, Lu W and Pan A L 2016 Nano Energy 30 481
|
[3] |
Jevtics D, Hurtado A, Guilhabert B, McPhillimy J, Cantarella G, Gao Q, Tan H H, Jagadish C, Strain M J and Dawson M D 2017 Nano Lett. 17 5990
|
[4] |
Kim K, Rho Y, Kim Y, Kim S H, Kim S G and Park C E 2016 Adv. Mater. 28 3209
|
[5] |
Wang M X, Yue G H, Lin Y D, Wen X, Peng D L and Geng Z R 2013 Nano-Micro Lett. 5 1
|
[6] |
Zhang W, Han W H, Zhao X S, Lv Q F, Ji X H, Yang T and Yang F H 2017 Chin. Phys. B 26 088101
|
[7] |
Wu D, Tang X, Wang K and Li X 2016 Opt. Express 24 A1336
|
[8] |
Gong X, Tong M H, Xia Y J, Cai W Z, Moon J S, Cao Y, Yu G, Shieh C L, Nilsson B and Heeger A J 2009 Science 325 1665
|
[9] |
Wang Q S, Li J, Lei Y, Wen Y, Wang Z X, Zhan X Y, Wang F, Wang F M, Huang Y, Xu K and He J 2016 Adv. Mater. 28 3596
|
[10] |
Huang X, Yu Y Q, Jones T, Fan H, Wang L, Xia J, Wang Z J, Shao L D, Meng X M and Willinger M G 2016 Adv. Mater. 28 7603
|
[11] |
Zhuang X J, Ning C Z and Pan A L 2012 Adv. Mater. 24 13
|
[12] |
Song Z M, Zhao D X, Guo Z, Li B H, Zhang Z Z and Shen D Z 2012 Acta Phys. Sin. 61 052901 (in Chinese)
|
[13] |
Kuo HC H, Wu J M, Lin S J and Chang W C 2013 Nanoscale Res. Lett. 8 327
|
[14] |
Fang H H, Hu W D, Wang P, Guo N, Luo W J, Zheng D S, Gong F, Luo M, Tian H J, Zhang X T, Luo C, Wu X, Chen P P, Liao L, Pan A L, Chen X S and Lu W 2016 Nano Lett. 16 6416
|
[15] |
Li L X, Pan D, Xue Y Z, Wang X L, Lin M L, Su D, Zhang Q L, Yu X Z, So H, Wei D H, Sun B Q, Tan P, Pan A L and Zhao J H 2017 Nano Lett. 17 622
|
[16] |
Tan H, Fan C, Ma L, Zhang X H, Fan P, Yang Y K, Hu W, Zhou H, Zhuang X J, Zhu X L and Pan A L 2016 Nano-Micro Lett. 8 29
|
[17] |
Ma L, Zhang X H, Li H L, Tan H, Yang Y K, Xu Y D, Hu W, Zhu X L, Zhuang X J and Pan A L 2015 Semicond. Sci. Tech. 30 105033
|
[18] |
Ma L, Hu W, Zhang Q L, Ren P Y, Zhuang X J, Zhou H, Xu J Y, Li H L, Shan Z P, Wang X X, Liao L, Xu H Q and Pan A L 2014 Nano Lett. 14 694
|
[19] |
Ren P Y, Zhu X L, Han J Y, Xu J Y, Ma L, Li H L, Zhuang X Z, Zhou H, Zhang Q L, Xia M G and Pan A 2014 Nano-Micro Lett. 6 301
|
[20] |
Yang Y K, Yang T F, Li H L, Qi Z Y, Chen X L, Wu W Q, Hu X L, He P B, Jiang Y, Hu W, Zhang Q L, Zhuang X Z, Zhu X L and Pan A L 2016 Chin. Phys. B 25 118106
|
[21] |
Xu Y D, Liu R P, Ma L, Li D, Yang Y K, Dai G Z and Wan Q 2017 Appl. Phys. A 123 6
|
[22] |
Glisson T H, Hauser J R, Littlejohn M A and William C K 1978 J. Electron. Mater. 7 1
|
[23] |
Ikyo A B, Marko I P, Hild K, Adams A R, Arafin S, Amann M C and Sweeney S J 2016 Sci. Rep. 6 19595
|
[24] |
Bhagwat V, Xiao Y, Bhat I, Dutta P, Refaat T F, Abedin M N and Kumar V 2006 J. Electron. Mater. 35 8
|
[25] |
Rakovics V, Tóth A L, Podör B, Frigeri C, Balázs J and Horváth Z E 2002 Mater. Sci. Eng. B 91 83
|
[26] |
Cherng M J, Stringfellow G B, Kisker D W, Srivastava A K and Zyskind J L 1986 Appl. Phys. Lett. 48 419
|
[27] |
Tsang W T, Chiu T H, Kisker D W and Ditzenberger J A 1985 Appl. Phys. Lett. 46 283
|
[28] |
Li S W, Koike K, Schulze-Kraasch F and Kubalek E 2001 J. Cryst. Growth 223 456
|
[29] |
Ren P Y, Hu W, Zhang Q L, Zhu X L, Zhuang X J, Ma L, Fan X P, Zhou H, Liao L, Duan X F and Pan A L 2014 Adv. Mater. 26 7444
|
[30] |
Wagner R S and Ellis W C 1964 Appl. Phys. Lett. 4 89
|
[31] |
Lugstein A, Schöndorfer C, Weil M, Tomastic C, Jauss A and Bertagnolli E 2007 Nucl. Instrum. Methods Phys. Res., Sect. B 255 309
|
[32] |
Liang B L, Jiang C P, Xia G Q, Fan S P and Chu J H 2001 J. Infrared Millim. Waves 20 315
|
[33] |
Li S W, Jin Y X, Zhou T M, Zhang B L, Ning Y Q, Jiang H, Yuan G, Zhang X Y and Yuan J S 1995 J. Cryst. Growth 156 39
|
[34] |
Miao J S, Hu W D, Guo N, Lu Z Y, Zou X M, Liao L, Shi S X, Chen P P, Fan Z Y, Ho J C, Li T X, Chen X S and Lu W 2014 ACS Nano 8 3628
|
[35] |
Guo P F, Xu J Y, Gong K, Shen X, Lu Y, Qiu Y, Xu J Q, Zou Z J, Wang C L, Yan H L, Luo Y S, Pan A L, Zhang H, Ho J C and Yu K M 2016 ACS Nano 10 8474
|
[36] |
Chen X L, Li H L, Qi Z Y, Yang T F, Yang Y K, Hu X L, Zhang X H, Zhu X L, Zhuang X J, Hu W and Pan A L 2016 Nanotechnology 27 505602
|
[37] |
Ali Z, Mirza M, Cao C B, Butt F K, Tanveer M, Tahir M, Aslam I, Idrees F and Safdar M 2014 ACS Appl. Mater. Interfaces 6 9550
|
[38] |
Xie X M and Shen G Z 2015 Nanoscale 7 5046
|
[39] |
Xu W, Chin A, Ye L, Ning C Z and Yu H B 2012 J. Appl. Phys. 111 104515
|
[40] |
Guo N, Hu W D, Liao L, Yip S P, Ho J C, Miao J S, Zhang Z, Zou J, Jiang T, Wu S W, Chen X S and Lu W 2014 Adv. Mater. 26 8203
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|