Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060202    DOI: 10.1088/1674-1056/26/6/060202
GENERAL Prev   Next  

Determination of the vapor-liquid transition of square-well particles using a novel generalized-canonical-ensemble-based method

Liang Zhao(赵亮)1, Shun Xu(徐顺)2, Yu-Song Tu(涂育松)1, Xin Zhou(周昕)3
1 College of Physical Science and Technology, Yangzhou University, Yangzhou 225009, China;
2 Supercomputer Center, Computer Network Information Center, Chinese Academy of Sciences, Beijing 100190, China;
3 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
Abstract  

The square-well (SW) potential is one of the simplest pair potential models and its phase behavior has been clearly revealed, therefore it has become a benchmark for checking new theories or numerical methods. We introduce the generalized canonical ensemble (GCE) into the isobaric replica exchange Monte Carlo (REMC) algorithm to form a novel isobaric GCE-REMC method, and apply it to the study of vapor-liquid transition of SW particles. It is validated that this method can reproduce the vapor-liquid diagram of SW particles by comparing the estimated vapor-liquid binodals and the critical point with those from the literature. The notable advantage of this method is that the unstable vapor-liquid coexisting states, which cannot be detected using conventional sampling techniques, are accessed with a high sampling efficiency. Besides, the isobaric GCE-REMC method can visit all the possible states, including stable, metastable or unstable states during the phase transition over a wide pressure range, providing an effective pathway to understand complex phase transitions during the nucleation or crystallization process in physical or biological systems.

Keywords:  square-well particles      phase-coexisting states      generalized canonical ensemble      replica exchange Monte Carlo  
Received:  04 December 2016      Revised:  28 February 2017      Accepted manuscript online: 
PACS:  02.70.Tt (Justifications or modifications of Monte Carlo methods)  
  02.70.Uu (Applications of Monte Carlo methods)  
  05.70.Ce (Thermodynamic functions and equations of state)  
  05.10.Ln (Monte Carlo methods)  
Fund: 

Project supported by the National Natural Science Foundation for Outstanding Young Scholars, China (Grant No. 11422542), the National Natural Science Foundation of China (Grant Nos. 11605151 and 11675138), and the Shanghai Supercomputer Center of China and Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase).

Corresponding Authors:  Yu-Song Tu, Xin Zhou     E-mail:  ystu@yzu.edu.cn;xzhou@ucas.ac.cn

Cite this article: 

Liang Zhao(赵亮), Shun Xu(徐顺), Yu-Song Tu(涂育松), Xin Zhou(周昕) Determination of the vapor-liquid transition of square-well particles using a novel generalized-canonical-ensemble-based method 2017 Chin. Phys. B 26 060202

[1] Barker J and Henderson D 1976 Rev. Mod. Phys. 48 587
[2] Young D A 1973 J. Chem. Phys. 58 1647
[3] Malescio G 2007 J. Phys.: Condens. Matter 19 073101
[4] Yuste S B, Santos A and López de Haro M 2011 Mol. Phys. 109 987
[5] Henderson D 1976 J. Chem. Phys. 64 5026
[6] Vega L, de Miguel E, Rull L F, Jackson G and McLure I A 1992 J. Chem. Phys. 96 2296
[7] Elliott J R and Hu L 1999 J. Chem. Phys. 110 3043
[8] Orkoulas G and Panagiotopoulos A Z 1999 J. Chem. Phys. 110 1581
[9] Singh J K, Kofke D A and Errington J R 2003 J. Chem. Phys. 119 3405
[10] Liu H, Garde S and Kumar S 2005 J. Chem. Phys. 123 174505
[11] Rio FD, Avalos E, Espindola R, Rull L F, Jackson G and Lago S 2002 Mol. Phys. 100 2531
[12] Pagan D L and Gunton J D 2005 J. Chem. Phys. 122 184515
[13] Lopez-Rendon R, Reyes Y and Orea P 2006 J. Chem. Phys. 125 084508
[14] El Mendoub E B, Wax J F, Charpentier I and Jakse N 2008 Mol. Phys. 106 2667
[15] Williamson J J and Evans R M 2012 Phys. Rev. E 86 011405
[16] Klotsa D and Jack R L 2011 Soft Matter 7 6294
[17] Haxton TK, Hedges LO and Whitelam S 2015 Soft Matter 11 9307
[18] Duda Y 2009 J. Chem. Phys. 130 116101
[19] Asherie N, Lomakin A and Benedek G B 1996 Phys. Rev. Lett. 77 4832
[20] Lomakin A, Asherie N and Benedek G B 1996 J. Chem. Phys. 104 1646
[21] Babu S, Gimel JC and Nicolai T 2006 J. Chem. Phys. 125 184512
[22] Odriozola G, Jimeńez-Ańgeles F and Orea P 2011 Chem. Phys. Lett. 501 466
[23] Giacometti A, Pastore G and Lado F 2009 Mol. Phys. 107 555
[24] Orkoulas G 2010 J. Chem. Phys. 133 111104
[25] Odriozola G 2009 J. Chem. Phys. 131 144107
[26] Panagiotopoulos AZ 1987 Mol. Phys. 61 813
[27] Kofke D A 2006 Mol. Phys. 78 1331
[28] Ferrenberg A M and Swendsen R H 1988 Phys. Rev. Lett. 61 2635
[29] Okabe T, Kawata M, Okamoto Y and Mikami M 2001 Chem. Phys. Lett. 335 435
[30] Zhang C B, Li M and Zhou X 2015 Chin. Phys. B 24 120202
[31] Gong L C, Zhou X and Ou-Yang Z C 2015 Chin. Phys. B 24 060202
[32] Lu S J and Zhou X 2015 Commun. Comput. Phys. 63 10
[33] Hai N N, Zhou X and Li M 2015 Commun. Theor. Phys. 64 249
[34] Xu S, Zhou X, Jiang Y and Wang Y 2015 Sci. China-Phys. Mech. Astron. 58
[35] Jeong S, Jho Y and Zhou X 2015 Sci. Rep. 5 15955
[36] Xu S and Ouyang Z C 2012 Commun. Comput. Phys. 12 1293
[37] Wang Z F and Chen L 2009 Chin. Phys. B 18 2048
[38] Zhang J X, Li H, Zhang J, Song X G and Bian X F 2009 Chin Phys. B 18 4949
[39] Xu Y D, Liu Q Q and Deng Y J 2012 Chin Phys. B 21 070211
[40] Kapfer S C and Krauth W 2015 Phys. Rev. Lett. 114 035702
[41] Michel M, Kapfer SC and Krauth W 2014 J. Chem. Phys. 140 054116
[42] Hu H, Chen X and Deng Y 2016 Front. Phys. 12 120503
[43] Challa M S S and Hetherington J H 1989 Phys. Rev. A 38 6324
[44] Martin-Mayor V 2006 Phys. Rev. Lett. 98 137207
[45] Costeniuc M, Ellis R S, Touchette H and Turkington B 2004 J. Stat. Phys. 119 1283
[46] Eppenga R and Frenkel D 1984 Mol. Phys. 52 1303
[47] Rathore N, Chopra M and de Pablo J J 2005 J. Chem. Phys. 122 024111
[48] Denschlag R, Lingenheil M and Tavan P 2009 Chem. Phys. Lett. 473 193
[49] Kofke D A 2002 J. Chem. Phys. 117 6911
[1] Sodium decorated net-Y nanosheet for hydrogen storage and adsorption mechanism: A first-principles study
Yunlei Wang(王云蕾), Yuhong Chen(陈玉红), Yunhui Wang(王允辉). Chin. Phys. B, 2020, 29(1): 016801.
[2] Monte Carlo study of the universal area distribution of clusters in honeycomb O(n) loop model
Xu Ya-Dong(许亚东), Liu Qing-Quan(刘清泉), and Deng You-Jin(邓友金) . Chin. Phys. B, 2012, 21(7): 070211.
No Suggested Reading articles found!