Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(7): 070211    DOI: 10.1088/1674-1056/21/7/070211
GENERAL Prev   Next  

Monte Carlo study of the universal area distribution of clusters in honeycomb O(n) loop model

Xu Ya-Dong(许亚东), Liu Qing-Quan(刘清泉), and Deng You-Jin(邓友金)
Hefei National Laboratory for Physical Sciences at the Microscale, Department of Modern Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  We investigate the area distribution of clusters (loops) for the honeycomb O(n) loop model by means of worm algorithm with n=0.5, 1, 1.5, and 2. At the critical point, the number of clusters, whose enclosed area is greater than A, is proportional to A-1 with a proportionality constant C. We confirm numerically that C is universal, and its value agrees well with the predictions based on the Coulomb gas method.
Keywords:  worm algorithm      O(n) loop model      universality      Coulomb gas method  
Received:  06 January 2012      Revised:  16 February 2012      Accepted manuscript online: 
PACS:  02.70.Tt (Justifications or modifications of Monte Carlo methods)  
  05.10.Ln (Monte Carlo methods)  
  64.60.De (Statistical mechanics of model systems (Ising model, Potts model, field-theory models, Monte Carlo techniques, etc.))  
  64.60.F- (Equilibrium properties near critical points, critical exponents)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10975127 ) and the Specialized Research Fund for the Doctoral Program of Higher Education, China (Grant No. 20113402110040).
Corresponding Authors:  Liu Qing-Quan     E-mail:  liuqq@mail.ustc.edu.cn

Cite this article: 

Xu Ya-Dong(许亚东), Liu Qing-Quan(刘清泉), and Deng You-Jin(邓友金) Monte Carlo study of the universal area distribution of clusters in honeycomb O(n) loop model 2012 Chin. Phys. B 21 070211

[1] Potts R B 1952 Proc. Cambridge Philos. Soc. 48 106
[2] Wu F Y 1982 Rev. Mod. Phys. 54 235
[3] Wu F Y 1983 Rev. Mod. Phys. 55 315(E)
[4] Wu F Y 1984 J. Appl. Phys. 55 2421
[5] Stanley H E 1968 Phys. Rev. Lett. 20 589
[6] Pelissetto A and Vicari E 2002 Phys. Rep. 368 549
[7] Kasteleyn P W and Fortuin C M 1969 J. Phys. Soc. Jpn. 26 11
[8] Fortuin C M and Kasteleyn P W 1972 Physica 57 536
[9] Grimmett G 2006 The Random-Cluster Model (New York: Springer-Verlag)
[10] Nienhuis B 1982 Phys. Rev. Lett. 49 1062
[11] Nienhuis B 1984 J. Stat. Phys. 34 731
[12] Berlin T H and Kac M 1952 Phys. Rev. 86 821
[13] Domany E, Mukamel D, Nienhuis B and Schwimmer A 1981 Nucl. Phys. B 190 279
[14] Blöte H W J and Nienhuis B 1994 Phys. Rev. Lett. 72 1372
[15] Liu Q Q, Deng Y J and Garoni T M 2011 Nucl. Phys. B 846 283
[16] Ding C X, Deng Y J, Guo W A, Qian X F and Blöte H W J 2007 J. Phys. A 40 3305
[17] Cardy J and Ziff R 2003 J. Stat. Phys. 110 1
[18] Prokof'ev N and Svistunov B 2001 Phys. Rev. Lett. 87 160601
[19] Deng Y J, Garoni T M and Sokal A D 2007 Phys. Rev. Lett. 98 110601
[1] Recent advance on the efficiency at maximum power of heat engines
Tu Zhan-Chun(涂展春) . Chin. Phys. B, 2012, 21(2): 020513.
[2] Quantum Monte Carlo study on the phase transition for a generalized two-dimensional staggered dimerized Heisenberg model
Zheng Rui (郑睿), Liu Bang-Gui (刘邦贵 ). Chin. Phys. B, 2012, 21(11): 116401.
[3] Optically induced phase transition of excitons in coupled quantum dots
Chen Zi-Dong(陈子栋). Chin. Phys. B, 2008, 17(3): 1084-1087.
[4] Connectivity correlations in three topological spaces of urban bus-transport networks in China
Chen Yong-Zhou(陈永洲), Fu Chun-Hua(付春花), Chang Hui(常慧), Li Nan(李南), and He Da-Ren(何大韧). Chin. Phys. B, 2008, 17(10): 3580-3587.
No Suggested Reading articles found!