Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(6): 060201    DOI: 10.1088/1674-1056/26/6/060201
GENERAL   Next  

Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization

Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯)
School of Materials Science and Engineering, University of Science and Technology Beijing(USTB), Beijing 100083, China
Abstract  

The crucible-free electrode induction melting gas atomization (EIGA) technology is an advanced technology for preparing ultra-clean nickel-based superalloy powders. One of the key issues for fabricating powders with high quality and yield is the consecutive induction melting of a superalloy electrode. The coupling of a superalloy electrode and coil, frequency, output power, and heat conduction are investigated to improve the controllable electrode induction melting process. Numerical simulation results show that when the coil frequency is 400 kHz, the output power is 100 kW, superalloy liquid flow with a diameter of about 5 mm is not consecutive. When the coil frequency is reduced to 40 kHz, the output power is 120 kW, superalloy liquid flow is consecutive, and its diameter is about 7 mm.

Keywords:  electrode induction gas atomization      coil frequency      output power      thermal conduction  
Received:  03 January 2017      Revised:  17 March 2017      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  41.20.Gz (Magnetostatics; magnetic shielding, magnetic induction, boundary-value problems)  
  61.66.Dk (Alloys )  
  81.20.Ev (Powder processing: powder metallurgy, compaction, sintering, mechanical alloying, and granulation)  
Corresponding Authors:  Min Xia, Chang-Chun Ge     E-mail:  xmdsg@ustb.edu.cn;ccge@mater.ustb.edu.cn

Cite this article: 

Shan Feng(峰山), Min Xia(夏敏), Chang-Chun Ge(葛昌纯) Consecutive induction melting of nickel-based superalloy in electrode induction gas atomization 2017 Chin. Phys. B 26 060201

[1] Bojarevics V, Roy A A and Pericleous K 2011 COMPEL 30 1455
[2] Franz H, Plochl L and Schimansky F P 2008 Titanium 2008 International Titanium Association, September 21-24, 2008, Las Vegas, USA, p. 198
[3] Pleier S, Goy W, Schaub B, Hohmann M, Mede M and Schumann R 2004 2004 International Conference on Powder Metallurgy & Particulate Materials, July 13-17, 2004, Chicago, USA, p. 49
[4] Qiu C, Wu X, Mei J, Andrews P and Voice W 2013 J. Alloys Compd. 578 454
[5] Gou W, Liu K K, Fu X H, Zhao R C, Sun J F and Xu Z 2016 Acta Phys. Sin. 65 130201 (in Chinese)
[6] Zhang Y, Yang S and Li L I 2002 Int. Mater. Rev. 16 14
[7] Bianchi L M 2003 Maney Publisher Valencia 3 328
[8] Guo W M, Wu J T, Zhang F G and Zhao M H 2006 J. Iron Steel Res. Int. 13 65
[9] Jin D and Liu Z 2013 Int. J. Adv. Manuf. Tech. 68 1573
[10] Wang X F, Zhou X M, Yang J, Zou J W and Wang W X 2013 Mater. Sci. Forum 47 526
[11] Yang H, Bao R, Zhang J, Peng L and Fei B 2011 Eng. Fail. Anal. 18 1058
[12] Denda T, Bretz P L and Tien, J K 1992 Metall. Trans. A23 519
[13] Tien J K and Nardone V C 1984 JOM 36 52
[14] Zou J W and Wang W X 2006 Journal of Aeronautical Matericals 26 244 (in Chinese)
[15] Shu Q, Ge C C and Xu Y 2012 Powder Metallurgy Technology 30 200 (in Chinese)
[16] Zhang Y, Ge C C, Guo B and Shen W P 2012 Acta Phys. Sin. 61 486 (in Chinese)
[17] Zhang G X, Han S B and Sun Z K 2015 Powder Metallurgy Industry 25 42 (in Chinese)
[18] Guo W M, Wu J T, Zhao F G, Zhou B and Zhao M H 2004 Mater. Rev. 18 87 (in Chinese)
[19] Xu L, Wu J, Liu Y Y, Lei J F and Yang R 2011 Titanium Industry Progress 28 19 (in Chinese)
[20] He W W, Jia W W, Yang G Y, Liu H Y and Huang Y 2012 Titanium Industry Progress 29 1 (in Chinese)
[21] Wan G Y, Chen G X and Lin Q Y 1994 Journal of Iron and Steel Research 6 55 (in Chinese)
[22] Easter S, Bojarevics V and K Pericleous K 2011 J. Phys.: Conf. Ser. 327 012027
[23] Roy A A, Easter S, Bojarevics V and Pericleous K 2012 Journal of Algorithms & Computational Technology 6 153
[24] Bojarevics V and Pericleous K 2008 COMPEL 27 350
[1] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[2] Electrocaloric effect enhanced thermal conduction of a multilayer ceramic structure
Hongbo Liu(刘宏波). Chin. Phys. B, 2020, 29(8): 087701.
[3] Theoretical analysis of cross-plane lattice thermal conduction in graphite
Yun-Feng Gu(顾云风). Chin. Phys. B, 2019, 28(6): 066301.
[4] Influence of fin architectures on linearity characteristics of AlGaN/GaNFinFETs
Ting-Ting Liu(刘婷婷), Kai Zhang(张凯), Guang-Run Zhu(朱广润), Jian-Jun Zhou(周建军), Yue-Chan Kong(孔月婵), Xin-Xin Yu(郁鑫鑫), Tang-Sheng Chen(陈堂胜). Chin. Phys. B, 2018, 27(4): 047307.
[5] Thermal properties of two-dimensional materials
Gang Zhang(张刚), Yong-Wei Zhang(张永伟). Chin. Phys. B, 2017, 26(3): 034401.
[6] Improved performance of near UV light-emitting diodes with a composition-graded p-AlGaN irregular sawtooth electron-blocking layer
Ping Qin(秦萍), Wei-Dong Song(宋伟东), Wen-Xiao Hu(胡文晓), Yuan-Wen Zhang(张苑文), Chong-Zhen Zhang(张崇臻), Ru-Peng Wang(王汝鹏), Liang-Liang Zhao(赵亮亮), Chao Xia(夏超), Song-Yang Yuan(袁松洋), Yi-an Yin(尹以安), Shu-Ti Li(李述体), Shi-Chen Su(宿世臣). Chin. Phys. B, 2016, 25(8): 088505.
[7] High power 2-μm room-temperature continuous-wave operation of GaSb-based strained quantum-well lasers
Xu Yun (徐云), Wang Yong-Bin (王永宾), Zhang Yu (张宇), Song Guo-Feng (宋国峰), Chen Liang-Hui (陈良惠). Chin. Phys. B, 2013, 22(9): 094208.
[8] Normal thermal conduction in lattice models with asymmetric harmonic interparticle interactions
Zhong Yi (钟毅), Zhang Yong (张勇), Wang Jiao (王矫), Zhao Hong (赵鸿). Chin. Phys. B, 2013, 22(7): 070505.
[9] The design and numerical analysis of tandem thermophotovoltaic cells
Yang Hao-Yu (杨皓宇), Liu Ren-Jun (刘仁俊), Wang Lian-Kai (王连锴), Lü You (吕游), Li Tian-Tian (李天天), Li Guo-Xing (李国兴), Zhang Yuan-Tao (张源涛), Zhang Bao-Lin (张宝林). Chin. Phys. B, 2013, 22(10): 108402.
[10] Thermal analysis of intense femtosecond laser ablation of aluminum
Hu Hao-Feng(胡浩丰), Ji Yang(吉扬), Hu Yang(胡阳), Ding Xiao-Yan(丁晓雁), Liu Xian-Wen(刘贤文), Guo Jing-Hui(郭静慧), Wang Xiao-Lei(王晓雷), and Zhai Hong-Chen(翟宏琛) . Chin. Phys. B, 2011, 20(4): 044204.
No Suggested Reading articles found!