Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(3): 037503    DOI: 10.1088/1674-1056/26/3/037503
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Modeling of the loading path dependent magnetomechanical behavior of Galfenol alloy

Hui Jiang(江慧), Jie Zhu(朱洁)
State Key Laboratory of Advanced Metals and Materials, University of Science and Technology Beijing, Beijing 100083, China
Abstract  

The magnetomechanical behavior of single-crystal Galfenol alloy was found to be strongly dependent on the loading paths. An energy-based anisotropic domain rotation model, assuming that the interaction between domains can be ignored and the probability of the magnetic moment pointing along a particular direction is related to the free energy along this direction, is used to simulate the magnetostriction versus magnetic field and stress curve and to track the magnetic domain motion trail. The main reason for loading path dependent effect is the rotation/flipping of the magnetic domains under different loading paths. The effect of loading and unloading paths on 90° magnetic domain motion was studied by choosing different loading and unloading state and paths. The results show that prior loading magnetic field can make the 90° magnetic domains flip to the directions of 45° domains because the magnetic field is the driving force to make the domains rotate, and the final loading state and the loading path both have great influence on the motion of 90° magnetic domains.

Keywords:  magnetomechanical behavior      loading path dependent      90°      magnetic domain flipping  
Received:  11 October 2016      Revised:  26 December 2016      Accepted manuscript online: 
PACS:  75.80.+q (Magnetomechanical effects, magnetostriction)  
Fund: 

Project supported by the General Program of National Natural Science Foundation of China (Grant No. 51371028).

Corresponding Authors:  Jie Zhu     E-mail:  jiezhu@ustb.edu.cn

Cite this article: 

Hui Jiang(江慧), Jie Zhu(朱洁) Modeling of the loading path dependent magnetomechanical behavior of Galfenol alloy 2017 Chin. Phys. B 26 037503

[1] Zhao X, Mellors N and Lord D G 2007 J. Appl. Phys. 101 09C513
[2] Clark A E, Yoo J H, Cullen J R, Wun-Fogle M, Petculescu G and Flatau A 2009 J. Appl. Phys. 105 07A913
[3] Atulasimha J, Flatau A and Cullen J R 2008 Smart Mater. Struct. 17 025027
[4] Bergqvist A and Engdahl G 1994 J. Appl. Phys. 75 5496
[5] Pei Y M and Fang D N 2008 Mater. Lett. 62 1313
[6] Yoo J H, Pelligrini G, Datta S and Flatau A 2011 Smart Mater. Struct. 20 075008
[7] Jiles D C and Thoekle J B 1994 J. Magn. Magn. Mater. 134 143
[8] Stoner E C and Wohlfarth E P 1948 Philos. Trans. R. Soc. London, Ser. A 240 599
[9] Armstrong W D 1997 J. Appl. Phys. 81 2321
[10] Restorff J B, Wun-Fogle M, Clark A E and Hathaway K B 2006 IEEE Trans. Magn. 42 3087
[11] Atulasimha J, Flatau A B and Summers E 2007 Smart Mater. Struct. 16 1265
[12] Clark A E, Hathaway K B, Wun-Fogle M, Restorff L B, Lograsso T A, Keppens V M, Petculescu G and Taylor R A 2003 J. Appl. Phys. 93 8621
[13] Kellogg R A, Flatau A B, Clark A E, Wun-Fogle M and Lograsso T A 2002 J. Appl. Phys. 91 7821
[14] Liu J H, Wang Z H, Jiang C B and Xu H B 2010 J. Appl. Phys. 108 033913
[15] Kellogg R A 2003 Development and Modeling of Iron-Gallium Alloys (Ph. D. Dissertation) (Ames: Iowa State University)
[16] Wun-Fogle M, Restorff J B and Clark A E 2006 J. Intell. Mater. Syst. Struct. 17 117
[17] Atulasimha J, Akharas G and Flatau A B 2008 J. Appl. Phys. 103 07B336
[18] Yan B P, Zhang C M, Li L Y, Tang Z F, Lü F Z and Yang K J 2015 Acta Phys. Sin. 64 027501 (in Chinese)
[19] Yan B P, Zhang C M, Li L Y, Lü F Z and Deng S 2016 Acta Phys. Sin. 65 067501 (in Chinese)
[1] Magnetostriction and spin reorientation in ferromagnetic Laves phase Pr(GaxFe1-x)1.9 compounds
Min-Yu Zeng(曾敏玉), Qing Tang(唐庆), Zhi-Wei Mei(梅志巍), Cai-Yan Lu(陆彩燕), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), and Ze-Ping Guo(郭泽平). Chin. Phys. B, 2021, 30(6): 067504.
[2] Influence of Tb on easy magnetization direction and magnetostriction of PrFe1.9 alloy
Chang-Xuan He(何昌璇), Yan-Mei Tang(唐妍梅), Xiang Li(李翔), Yun He(何云), Cai-Yan Lu(陆彩燕), Ze-Ping Guo(郭泽平). Chin. Phys. B, 2019, 28(11): 117501.
[3] Magneto optics and time resolved terahertz spectrocopy
T Dong(董涛), Z G Chen(谌志国), N L Wang(王楠林). Chin. Phys. B, 2018, 27(7): 077501.
[4] Multiple broadband magnetoelectric response in Terfenol-D/PZT structure
Jian-Biao Wen(文建彪), Juan-Juan Zhang(张娟娟), Yuan-Wen Gao(高原文). Chin. Phys. B, 2018, 27(2): 027702.
[5] Multiferroic and enhanced microwave absorption induced by complex oxide interfaces
Cuimei Cao(曹翠梅), Chunhui Dong(董春晖), Jinli Yao(幺金丽), Changjun Jiang(蒋长军). Chin. Phys. B, 2018, 27(1): 017503.
[6] Low temperature magnetic and magnetostrictive properties in Pr(Fe1-xCox)1.9 cubic Laves alloys
Yan-Mei Tang(唐妍梅), Hang-Yu Xu(徐行祤), Ye Huang(黄业), Zhi-Xiong Tang(唐志雄), Shao-Long Tang(唐少龙). Chin. Phys. B, 2017, 26(12): 127502.
[7] Modified magnetomechancial model in the constant and low intensity magnetic field based on J–A theory
Qingyou Liu(刘清友), Xu Luo(罗旭), Haiyan Zhu(朱海燕), Jianxun Liu(刘建勋), Yiwei Han(韩一维). Chin. Phys. B, 2017, 26(7): 077502.
[8] Giant low-frequency magnetoelectric torque (MET) effect in polyvinylidene-fluoride (PVDF)-based MET device
Chun-Lei Zheng(郑春蕾), Yi-Wei Liu(刘宜伟), Qing-Feng Zhan(詹清峰), Yuan-Zhao Wu(巫远招), Run-Wei Li(李润伟). Chin. Phys. B, 2017, 26(6): 067703.
[9] Dy substitution effect on the temperature dependences of magnetostriction in Pr1-xDyxFe1.9 alloys
Yan-Mei Tang(唐妍梅), Hai-Fu Huang(黄海富), Shao-Long Tang(唐少龙), You-Wei Du(都有为). Chin. Phys. B, 2016, 25(11): 117503.
[10] Influence of Tb on easy magnetization direction and magnetostriction of ferromagnetic Laves phase GdFe2 compounds
Adil Murtaza, Sen Yang(杨森), Chao Zhou(周超), Xiaoping Song(宋晓平). Chin. Phys. B, 2016, 25(9): 096107.
[11] Al-doping-induced magnetocapacitance in the multiferroic AgCrS2
Liu Rong-Deng (刘荣灯), He Lun-Hua (何伦华), Yan Li-Qin (闫丽琴), Wang Zhi-Cui (王志翠), Sun Yang (孙阳), Liu Yun-Tao (刘蕴韬), Chen Dong-Feng (陈东风), Zhang Sen (张森), Zhao Yong-Gang (赵永刚), Wang Fang-Wei (王芳卫). Chin. Phys. B, 2015, 24(12): 127507.
[12] Equivalent circuit model including magnetic and thermo sources for the thermo–magneto–electric coupling effect in magnetoelectric laminates
Cui Xiao-Le (崔晓乐), Zhou Hao-Miao (周浩淼). Chin. Phys. B, 2015, 24(7): 077506.
[13] Quantitative calculations of polarizations arising from the symmetric and antisymmetric exchange strictions in Tm-doped GdMnO3
Qin Ming-Hui (秦明辉), Lin Lin (林林), Li Lin (李林), Jia Xing-Tao (贾兴涛), Liu Jun-Ming (刘俊明). Chin. Phys. B, 2015, 24(3): 037509.
[14] Theoretical study of mutual control mechanism between magnetization and polarization in multiferroic materials
Liu Yu (刘宇), Zhai Liang-Jun (翟良君), Wang Huai-Yu (王怀玉). Chin. Phys. B, 2015, 24(3): 037510.
[15] Modelling self-sensing of a magnetostrictive actuator based on a terfenol-D rod
Yan Bai-Ping (严柏平), Zhang Cheng-Ming (张成明), Li Li-Yi (李立毅), Tang Zhi-Feng (唐志峰), Lü Fu-Zai (吕福在), Yang Ke-Ji (杨克己). Chin. Phys. B, 2014, 23(12): 127504.
No Suggested Reading articles found!