Please wait a minute...
Chin. Phys. B, 2017, Vol. 26(2): 026102    DOI: 10.1088/1674-1056/26/2/026102
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters

Yuan-Yuan Wang(王园园)1, Jian-Hua Ding(丁建华)1, Wen-Bo Liu(柳文波)2, Shao-Song Huang(黄绍松)1, Xiao-Qin Ke(柯小琴)3, Yun-Zhi Wang(王云志)3,4, Chi Zhang(张弛)5, Ji-Jun Zhao(赵纪军)1
1 Key Laboratory of Materials Modification by Laser, Ion and Electron Beams(Ministry of Education), Dalian University of Technology, Dalian 116024, China;
2 Department of Nuclear Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China;
3 Center of Microstructure Science, Multi-Disciplinary Materials Research Center, Frontier Institute of Science and Technology, State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an 710049, China;
4 Department of Materials Science and Engineering, Ohio State University, Columbus, Ohio 43210, USA;
5 Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China
Abstract  A series of material parameters are derived from atomistic simulations and implemented into a phase field (PF) model to simulate void evolution in body-centered cubic (bcc) iron subjected to different irradiation doses at different temperatures. The simulation results show good agreement with experimental observations–the porosity as a function of temperature varies in a bell-shaped manner and the void density monotonically decreases with increasing temperatures; both porosity and void density increase with increasing irradiation dose at the same temperature. Analysis reveals that the evolution of void number and size is determined by the interplay among the production, diffusion and recombination of vacancy and interstitial.
Keywords:  phase field method      atomistic simulation      void evolution      irradiation  
Received:  10 November 2016      Revised:  29 November 2016      Accepted manuscript online: 
PACS:  61.50.Ah (Theory of crystal structure, crystal symmetry; calculations and modeling)  
  61.72.Qq (Microscopic defects (voids, inclusions, etc.))  
Fund: Project supported by the National Magnetic Confinement Fusion Energy Research Project of China (Grant No. 2015GB118001), the Fundamental Research Funds for the Central Universities, China (Grant No. DUT16RC(3)052), the National Basic Research Program of China (Grant No. 2012CB619402), and the NETL Project (Grant No. DE-FE0027776).
Corresponding Authors:  Ji-Jun Zhao     E-mail:  zhaojj@dlut.edu.cn

Cite this article: 

Yuan-Yuan Wang(王园园), Jian-Hua Ding(丁建华), Wen-Bo Liu(柳文波), Shao-Song Huang(黄绍松), Xiao-Qin Ke(柯小琴), Yun-Zhi Wang(王云志), Chi Zhang(张弛), Ji-Jun Zhao(赵纪军) Irradiation-induced void evolution in iron: A phase-field approach with atomistic derived parameters 2017 Chin. Phys. B 26 026102

[1] Raj B and Vijayalakshmi M 2012 Comprehensive Nuclear Materials (Elsevier: Oxford) pp. 97-121
[2] Baluc N, Gelles D S, Jitsukawa S, Kimura A, Klueh R L, Odette G R, Van der Schaaf B and Yu J 2007 J. Nucl. Mater. Part A 367-370 33
[3] Li Y F, Shen T L, Gao X, Yao C F, Wei K F, Sun J R, Li B S, Zhu Y B, Pang L L, Cui M H, Chang H L, Wang J, Zhu H P, Hu B T and Wang Z G 2013 Chin. Phys. Lett. 30 126101
[4] Little E A and Stow D A 1979 J. Nucl. Mater. 87 25
[5] Singh B N, Horsewell A and Toft P 1999 J. Nucl. Mater. 271-272 97
[6] Hernández-Mayoral M and Gómez-Briceño D 2010 J. Nucl. Mater. 399 146
[7] Zhang C, Fu J, Li R, Zhang P, Zhao J and Dong C 2014 J. Nucl. Mater. 455 354
[8] Fu C C, Torre J D, Willaime F, Bocquet J L and Barbu A 2005 Nat. Mater. 4 68
[9] Harkness S D and Li C Y 1971 Metall. Trans. 2 1457
[10] Konobeev Y V, Dvoriashin A M, Porollo S I and Garner F A 2006 J. Nucl. Mater. 355 124
[11] Yu G, Ma Y, Cai J and Lu D G 2012 Chin. Phys. B 21 036101
[12] Yu H C and Lu W 2005 Acta Mater. 53 1799
[13] Srujan R, Anter E A, Paul M and Dieter W 2009 Model. Simul. Mater. Sci. Eng. 17 064002
[14] Paul C M, Srujan R, Anter E A, Michael T and Dieter W 2009 Model. Simul. Mater. Sci. Eng. 17 064003
[15] Millett P C, El-Azab A, Rokkam S, Tonks M and Wolf D 2011 Comput. Mater. Sci. 50 949
[16] Millett P C, El-Azab A and Wolf D 2011 Comput. Mater. Sci. 50 960
[17] Millett P C and Tonks M 2011 Comput. Mater. Sci. 50 2044
[18] Millett P C and Tonks M 2011 Curr. Opin. Solid St. M. 15 125
[19] Millett P C, Wolf D, Desai T, Rokkam S and El-Azab A 2008 J. Appl. Phys. 104 033512
[20] Tonks M, Gaston D, Permann C, Millett P C, Hansen G and Wolf D 2010 Nucl. Eng. Des. 240 2877
[21] Millett P C, Tonks M R, Biner S B, Zhang L, Chockalingam K and Zhang Y 2012 J. Nucl. Mater. 425 130
[22] Li Y, Hu S, Sun X, Gao F, Henager C H Jr and Khaleel M 2010 J. Nucl. Mater. 407 119
[23] Hu S, Casella A M, Lavender C A, Senor D J and Burkes D E 2015 J. Nucl. Mater. 462 64
[24] Li Y, Hu S, Montgomery R, Gao F and Sun X 2013 Nucl. Instrum. Method B 303 62
[25] Hu S Y, Henager C H Jr, Li Y L, Gao F, Sun X and Khaleel M A 2012 Model. Simul. Mater. Sci. Eng. 20 015011
[26] Hu S Y, Henager Jr C H, Heinisch H L, Stan M, Baskes M I and Valone S M 2009 J. Nucl. Mater. 392 292
[27] Li Y L, Hu S Y, Henager Jr C H, Deng H, Gao F, Sun X and Khaleel M A 2012 J. Nucl. Mater. 427 259
[28] Hu S Y, Burkes D E, Lavender C A, Senor D J, Setyawan W and Xu Z J 2016 J. Nucl. Mater. 479 202
[29] Li D S, Li Y L, Hu S Y, Sun X and Khaleel M A 2012 Metall. Mater. Trans. A 43 1060
[30] Ding X, Zhao J, Huang H, Ding S and Huo Y 2016 J. Nucl. Mater. 480 120
[31] Liu W B, Wang N, Ji Y Z, Song P C, Zhang C, Yang Z G and Chen L Q 2016 J. Nucl. Mater. 479 316
[32] Kresse G and Furthmüller J 1996 Phys. Rev. B 54 11169
[33] Kresse G and Hafner J 1993 Phys. Rev. B 47 558
[34] Kohn W and Sham L J 1965 Phys. Rev. 140 A1133
[35] Hohenberg P and Kohn W 1964 Phys. Rev. 136 B864
[36] Blöchl P E 1994 Phys. Rev. B 50 17953
[37] Kresse G and Joubert D 1999 Phys. Rev. B 59 1758
[38] Perdew J P, Chevary J A, Vosko S H, Jackson K A, Pederson M R, Singh D J and Fiolhais C 1992 Phys. Rev. B 46 6671
[39] Perdew J P, Burke K and Ernzerhof M 1996 Phys. Rev. Lett. 77 3865
[40] Monkhorst H J and Pack J D 1976 Phys. Rev. B 13 5188
[41] Olsson P, Domain C and Wallenius 2007 Phys. Rev. B 75 014110
[42] Philipsen P H T and Baerends E J 1996 Phys. Rev. B 54 5326
[43] Mattsson A E and Armiento R 2009 Phys. Rev. B 79 155101
[44] Rayne J A and Chandrasekhar B S 1961 Phys. Rev. 122 1714
[45] Kittel C 1996 Introduction to Solid State Physics, 8th edn. (New York: John Wiley and Sons) pp. 50, 328
[46] Basinski Z S, Hume-Rothery W and Sutton A L 1955 Proc. Roy. Soc. Lond. A 229 459
[47] Willaime F, Fu C C, Marinica M C and Dalla Torre J 2005 Nucl. Instrum. Method B 228 92
[48] De Schepper L, Segers D, Dorikens-Vanpraet L, Dorikens M, Knuyt G, Stals L M and Moser P 1983 Phys. Rev. B 27 5257
[49] Fu C C, Willaime F and Ordejón P 2004 Phys. Rev. Lett. 92 175503
[50] Zhang P, Zhao J, Qin Y and Wen B 2011 J. Nucl. Mater. 419 1
[51] Johnson R A 1964 Phys. Rev. 134 A1329
[52] Soneda N and Diaz de La Rubia T 2001 Philos. Mag. A 81 331
[53] Borodin V A and Vladimirov P V 2007 J. Nucl. Mater. 362 161
[54] Wang H and Li Z 2004 J. Mater. Sci. 39 3425
[55] Horton L L, Bentley J and Farrell K 1982 J. Nucl. Mater. 108 222
[56] Hayns M R and Williams T M 1978 J. Nucl. Mater. 74 151
[57] Norris D I R 1972 Radiat. Eff. 14 1
[58] Getto E, Jiao Z, Monterrosa A M, Sun K and Was G S 2015 J. Nucl. Mater. 462 458
[59] Toloczko M B, Garner F A, Voyevodin V N, Bryk V V, Borodin O V, Mel'nychenko V V and Kalchenko A S 2014 J. Nucl. Mater. 453 323
[1] Atomic simulations of primary irradiation damage in U-Mo-Xe system
Wen-Hong Ouyang(欧阳文泓), Jian-Bo Liu(刘剑波), Wen-Sheng Lai(赖文生),Jia-Hao Li(李家好), and Bai-Xin Liu(柳百新). Chin. Phys. B, 2023, 32(3): 036101.
[2] Molecular dynamics study of interactions between edge dislocation and irradiation-induced defects in Fe–10Ni–20Cr alloy
Tao-Wen Xiong(熊涛文), Xiao-Ping Chen(陈小平), Ye-Ping Lin(林也平), Xin-Fu He(贺新福), Wen Yang(杨文), Wang-Yu Hu(胡望宇), Fei Gao(高飞), and Hui-Qiu Deng(邓辉球). Chin. Phys. B, 2023, 32(2): 020206.
[3] Surface structure modification of ReSe2 nanosheets via carbon ion irradiation
Mei Qiao(乔梅), Tie-Jun Wang(王铁军), Yong Liu(刘泳), Tao Liu(刘涛), Shan Liu(刘珊), and Shi-Cai Xu(许士才). Chin. Phys. B, 2023, 32(2): 026101.
[4] Time-resolved K-shell x-ray spectra of nanosecond laser-produced titanium tracer in gold plasmas
Zhencen He(何贞岑), Jiyan Zhang(张继彦), Jiamin Yang(杨家敏), Bing Yan(闫冰), and Zhimin Hu(胡智民). Chin. Phys. B, 2023, 32(1): 015202.
[5] Microstructure and hardening effect of pure tungsten and ZrO2 strengthened tungsten under carbon ion irradiation at 700℃
Chun-Yang Luo(罗春阳), Bo Cui(崔博), Liu-Jie Xu(徐流杰), Le Zong(宗乐), Chuan Xu(徐川), En-Gang Fu(付恩刚), Xiao-Song Zhou(周晓松), Xing-Gui Long(龙兴贵), Shu-Ming Peng(彭述明), Shi-Zhong Wei(魏世忠), and Hua-Hai Shen(申华海). Chin. Phys. B, 2022, 31(9): 096102.
[6] Effects of oxygen concentration and irradiation defects on the oxidation corrosion of body-centered-cubic iron surfaces: A first-principles study
Zhiqiang Ye(叶志强), Yawei Lei(雷亚威), Jingdan Zhang(张静丹), Yange Zhang(张艳革), Xiangyan Li(李祥艳), Yichun Xu(许依春), Xuebang Wu(吴学邦), C. S. Liu(刘长松), Ting Hao(郝汀), and Zhiguang Wang(王志光). Chin. Phys. B, 2022, 31(8): 086802.
[7] Angular dependence of proton-induced single event transient in silicon-germanium heterojunction bipolar transistors
Jianan Wei(魏佳男), Yang Li(李洋), Wenlong Liao(廖文龙), Fang Liu(刘方), Yonghong Li(李永宏), Jiancheng Liu(刘建成), Chaohui He(贺朝会), and Gang Guo(郭刚). Chin. Phys. B, 2022, 31(8): 086106.
[8] Novel closed-cycle reaction mode for totally green production of Cu1.8Se nanoparticles based on laser-generated Se colloidal solution
Zhangyu Gu(顾张彧), Yisong Fan(范一松), Yixing Ye(叶一星), Yunyu Cai(蔡云雨), Jun Liu(刘俊), Shouliang Wu(吴守良), Pengfei Li(李鹏飞), Junhua Hu(胡俊华), Changhao Liang(梁长浩), and Yao Ma(马垚). Chin. Phys. B, 2022, 31(7): 078102.
[9] Loss prediction of three-level amplified spontaneous emission sources in radiation environment
Shen Tan(谭深), Yan Li(李彦), Hao-Shi Zhang(张浩石), Xiao-Wei Wang(王晓伟), and Jing Jin(金靖). Chin. Phys. B, 2022, 31(6): 064211.
[10] Evolution of optical properties and molecular structure of PCBM films under proton irradiation
Guo-Dong Xiong(熊国栋), Hui-Ping Zhu(朱慧平), Lei Wang(王磊), Bo Li(李博), Fa-Zhan Zhao(赵发展), and Zheng-Sheng Han(韩郑生). Chin. Phys. B, 2022, 31(5): 057102.
[11] Laser-induced phase conversion of n-type SnSe2 to p-type SnSe
Qi Zheng(郑琦), Rong Yang(杨蓉), Kang Wu(吴康), Xiao Lin(林晓), Shixuan Du(杜世萱), Chengmin Shen(申承民), Lihong Bao(鲍丽宏), and Hong-Jun Gao(高鸿钧). Chin. Phys. B, 2022, 31(4): 047306.
[12] Lattice damage in InGaN induced by swift heavy ion irradiation
Ning Liu(刘宁), Li-Min Zhang(张利民), Xue-Ting Liu(刘雪婷), Shuo Zhang(张硕), Tie-Shan Wang(王铁山), and Hong-Xia Guo(郭红霞). Chin. Phys. B, 2022, 31(10): 106103.
[13] Sphere-shaped SiGe micro/nanostructures with tunable Ge composition and size formed by laser irradiation
Xinxin Li(李欣欣), Zhen Deng(邓震), Sen Wang(王森), Jinbiao Liu(刘金彪), Jun Li(李俊), Yang Jiang(江洋), Ziguang Ma(马紫光), Chunhua Du(杜春花), Haiqiang Jia(贾海强), Wenxin Wang(王文新), and Hong Chen(陈弘). Chin. Phys. B, 2021, 30(9): 096104.
[14] Microstructure evolution of T91 steel after heavy ion irradiation at 550 ℃
Ligang Song(宋力刚), Bo Huang(黄波), Jianghua Li(李江华), Xianfeng Ma(马显锋), Yang Li(李阳), Zehua Fang(方泽华), Min Liu(刘敏), Jishen Jiang(蒋季伸), and Yanying Hu(胡琰莹). Chin. Phys. B, 2021, 30(8): 086103.
[15] Influence of helium on the evolution of irradiation-induced defects in tungsten: An object kinetic Monte Carlo simulation
Peng-Wei Hou(侯鹏伟), Yu-Hao Li(李宇浩), Zhong-Zhu Li(李中柱), Li-Fang Wang(王丽芳), Xingyu Gao(高兴誉), Hong-Bo Zhou(周洪波), Haifeng Song(宋海峰), and Guang-Hong Lu(吕广宏). Chin. Phys. B, 2021, 30(8): 086108.
No Suggested Reading articles found!