Please wait a minute...
Chin. Phys. B, 2016, Vol. 25(4): 046101    DOI: 10.1088/1674-1056/25/4/046101
CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES Prev   Next  

Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells

Tian-Tian Li(李天天)1,2,4,5, Tie Yang(杨铁)1,3, Jia Fang(方家)1,2,4,5, De-Kun Zhang(张德坤)1,2,4,5, Jian Sun(孙建)1,2,4,5, Chang-Chun Wei(魏长春)1,2,4,5, Sheng-Zhi Xu(许盛之)1,2,4,5, Guang-Cai Wang(王广才)1,2,4,5, Cai-Chi Liu(刘彩池)3, Ying Zhao(赵颖)1, Xiao-Dan Zhang(张晓丹)1,2,4,5
1 Institute of Photo-electronic Thin Film Device and Technique, Nankai University, Tianjin 300071, China;
2 Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China;
3 School of Material Science and Engineering, Hebei University of Technology, Tianjin 300130, China;
4 Key Laboratory of Photo-electronic Thin Film Devices and Technology of Tianjin, Tianjin 300071, China;
5 Key Laboratory of Photo-electronic Information Science and Technology of Ministry of Education, Nankai University, Tianjin 300071, China
Abstract  Phosphorous-doped hydrogenated nanocrystalline silicon oxide (n-nc-SiOx:H) films are prepared via radio frequency plasma enhanced chemical vapor deposition (RF-PECVD). Increasing deposition power during n-nc-SiOx:H film growth process can enhance the formation of nanocrystalline and obtain a uniform microstructure of n-nc-SiOx:H film. In addition, in 20s interval before increasing the deposition power, high density small grains are formed in amorphous SiOx matrix with higher crystalline volume fraction (Ic) and have a lower lateral conductivity. This uniform microstructure indicates that the higher Ic can leads to better vertical conductivity, lower refractive index, wider optical band-gap. It improves the back reflection in a-Si:H/a-SiGe:H tandem solar cells acting as an n-nc-SiOx:H back reflector prepared by the gradient power during deposition. Compared with the sample with SiOx back reflector, with a constant power used in deposition process, the sample with gradient power SiOx back reflector can enhance the total short-circuit current density (Jsc) and the initial efficiency of a-Si:H/a-SiGe:H tandem solar cells by 8.3% and 15.5%, respectively.
Keywords:  gradient deposition power      n-nc-SiOx:H films      back reflector      Tandem solar cells  
Received:  03 November 2015      Revised:  24 December 2015      Accepted manuscript online: 
PACS:  61.05.-a (Techniques for structure determination)  
  61.46.Df (Structure of nanocrystals and nanoparticles ("colloidal" quantum dots but not gate-isolated embedded quantum dots))  
  78.20.-e (Optical properties of bulk materials and thin films)  
  81.05.Gc (Amorphous semiconductors)  
Fund: Project supported by the Hi-Tech Research and Development Program of China (Grant No. 2013AA050302), the National Natural Science Foundation of China (Grant No. 61474065), Tianjin Municipal Research Key Program of Application Foundation and Advanced Technology, China (Grant No. 15JCZDJC31300), the Key Project in the Science & Technology Pillar Program of Jiangsu Province, China (Grant No. BE2014147-3), and the Specialized Research Fund for the Ph. D. Program of Higher Education, China (Grant No. 20120031110039).
Corresponding Authors:  Xiao-Dan Zhang     E-mail:  xdzhang@nankai.edu.cn

Cite this article: 

Tian-Tian Li(李天天), Tie Yang(杨铁), Jia Fang(方家), De-Kun Zhang(张德坤), Jian Sun(孙建), Chang-Chun Wei(魏长春), Sheng-Zhi Xu(许盛之), Guang-Cai Wang(王广才), Cai-Chi Liu(刘彩池), Ying Zhao(赵颖), Xiao-Dan Zhang(张晓丹) Microstructure and lateral conductivity control of hydrogenated nanocrystalline silicon oxide and its application in a-Si:H/a-SiGe:H tandem solar cells 2016 Chin. Phys. B 25 046101

[1] Chen L, Wang Q K, Wangyang P H, Huang K and Shen X Q 2015 Chin. Phys. B 24 040202
[2] Jia Z N, Zhang X D, Liu Y, Wang Y F, Fan J, Liu C C and Zhao Y 2014 Chin. Phys. B 23 046106
[3] Tan H R, Babal P, Zeman M and Smets A H M 2015 Sol. Energy Mater. Sol. Cells 132 597
[4] Wang L, Zhang X D, Zhao Y, Yamada T and Naito Y 2014 Appl. Surf. Sci. 316 508
[5] Chang K M, Ho P C, Yu S H, Hsu J M, Yang K H, Wu C J and Chang C C 2013 Appl. Surf. Sci. 276 756
[6] Biron R, Pahud C, Haug F J and Ballif C 2012 J Non-cryst Solids 358 1958
[7] Lambertz A, Finger F, Holländer B, Rath J K and Schropp R E I 2012 J. Non-cryst Solids 358 1962
[8] Mercaldo L V, Usatii I, Esposito E M and Veneri P D 2015 Sol. Energy Mater. Sol. Cells 136 32
[9] Jung S J, Kim B J and Shin M 2014 Sol. Energy Mater. Sol. Cells 121 1
[10] Boccard M, Despeisse M, Escarre J, Niquille X, Bugnon G, Hänni S, Eymard M B, Meillaud F and Ballif C 2014 IEEE J. Photovolt 4 1368
[11] Veneri P D, Mercaldo L V and Usatii I 2010 Appl. Phys. Lett. 97 023512
[12] Zhang X D, Yue Q, Zheng X X, Geng X H and Zhao Y 2011 Thin Solid Films 520 684
[13] Mercaldo L V, Veneri P D, Usatii I, Esposito E M and Nicotra G 2013 Sol. Energy Mater. Sol. Cells 119 67
[14] Myong S Y and Jeon L S 2013 Sol. Energy Mater. Sol. Cells 119 77
[15] Mandal S, Das G, Dhar S, Tomy R M, Mukhopadhyay S, Banerjee C and Barua A K 2015 Mater. Chem. Phys. 157 130
[16] Mandal S, Das G, Dhar S, Tomy R M, Mukhopadhyay S, Banerjee C and Barua A K 2015 J. Mater. Sci.-Mater. El. 26 331
[17] Cuony P, Alexander D T L, Wurfl I P, Despeisse M, Bugnon G, Boccard M, Söderström T, Wyser A H, Hébert C and Ballif C 2012 Adv. Mater. 24 1182
[18] Chung J W, Lee J E, Janq J H, Lee J C, Cho J S, Kim Y K, Yi J, Park O O, Song J and Yoon K H 34th IEEE Photovoltaic Specialists Conference (PVSC), 2009. Philadelphia, PA, USA
[19] Fathi E, Vygranenko Y, Vieira M and Sazonov A 2011 Appl. Surf. Sci. 257 8901
[20] Wolf I D 1996 Semicond. Sci. Technol. 11 139
[21] Das D and Barua A K 2000 Sol. Energy Mater. Sol. Cells 60 167
[22] Grundler T, Lambert A and Finger F 2010 Phys. Status Solidi (c) 3-4 1085
[23] Bugnon G, Söderström T, Nicolay S, Ding L, Despeisse M, Hedler A, Eberhardt J, Wachtendorf C and Ballif C 2011 Sol. Energy Mater. Sol. Cells 95 2161
[24] Samanta A and Das D 2011 J. Electrochem. Soc. 158 H1138
[25] Birgin E G, Chambouleyron I and Martínez J M 1999 J. Comput. Phys. 151 862
[26] Das D, Iftiquar S M and Barua A K 1997 J. Non-cryst Solids 210 148
[27] Das D 2003 J. Phys. D: Appl. Phys. 36 2335
[28] Alpuim P, Chu P V and Conde J P 1999 J. Appl. Phys. 86 3812
[29] Das D and Bhattacharya K 2006 J. Appl. Phys. 100 103701
[30] Song C, Chen G R, Xu J, Wang T, Sun H C, Liu Y, Li W, Ma Z Y, Xu L, Huang X F and Chen K J 2009 J. Appl. Phys. 105 054901
[1] Optical simulation of CsPbI3/TOPCon tandem solar cells with advanced light management
Min Yue(岳敏), Yan Wang(王燕), Hui-Li Liang(梁会力), and Zeng-Xia Mei (梅增霞). Chin. Phys. B, 2022, 31(8): 088801.
[2] Device simulation of quasi-two-dimensional perovskite/silicon tandem solar cells towards 30%-efficiency
Xiao-Ping Xie(谢小平), Qian-Yu Bai(白倩玉), Gang Liu(刘刚), Peng Dong(董鹏), Da-Wei Liu(刘大伟), Yu-Feng Ni(倪玉凤), Chen-Bo Liu(刘晨波), He Xi(习鹤), Wei-Dong Zhu(朱卫东), Da-Zheng Chen(陈大正), and Chun-Fu Zhang(张春福). Chin. Phys. B, 2022, 31(10): 108801.
[3] The investigation of ZnO:Al2O3/metal composite back reflectors in amorphous silicon germanium thin film solar cells
Wang Guang-Hong (王光红), Zhao Lei (赵雷), Yan Bao-Jun (闫保军), Chen Jing-Wei (陈静伟), Wang Ge (王革), Diao Hong-Wei (刁宏伟), Wang Wen-Jing (王文静). Chin. Phys. B, 2013, 22(6): 068102.
[4] The p recombination layer in tunnel junctions for micromorph tandem solar cells
Yao Wen-Jie(姚文杰), Zeng Xiang-Bo(曾湘波), Peng Wen-Bo(彭文博), Liu Shi-Yong(刘石勇), Xie Xiao-Bing(谢小兵), Wang Chao(王超), and Liao Xian-Bo(廖显伯). Chin. Phys. B, 2011, 20(7): 078402.
No Suggested Reading articles found!