|
|
THz wave emission from argon in two-color laser field |
Du Ling-Ling (杜玲玲)a, Zhao Song-Feng (赵松峰)a, Zhou Xiao-Xin (周效信)a, Zhao Zeng-Xiu (赵增秀)b |
a College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China;
b Department of Physics, National University of Defense Technology, Changsha 410073, China |
|
|
Abstract Terahertz (THz) wave emission from argon atom in a two-color laser pulses is studied numerically by solving the one-dimensional (1D) time-dependent Schrödinger equation. The THz spectra we obtained include both discontinuous and continuum ones. By using the special basis functions that we previously proposed, our analysis points out that the discontinuous and continuum parts are contributed by bound-bound and continuum-continuum transition of atomic energy levels. Although the atomic wave function is strongly dressed during the interaction with laser fields, our identification for the discontinuous part of the THz wave shows that the transition between highly excited bound states can still be well described by the field-free basis function in the tunneling ionization regime.
|
Received: 20 August 2014
Revised: 30 November 2014
Accepted manuscript online:
|
PACS:
|
32.80.Rm
|
(Multiphoton ionization and excitation to highly excited states)
|
|
42.65.-k
|
(Nonlinear optics)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11465016, 11374366, and 11164025). |
Corresponding Authors:
Zhou Xiao-Xin, Zhao Zeng-Xiu
E-mail: zhouxx@nwnu.edu.cn;zhao.zengxiu@gmail.com
|
Cite this article:
Du Ling-Ling (杜玲玲), Zhao Song-Feng (赵松峰), Zhou Xiao-Xin (周效信), Zhao Zeng-Xiu (赵增秀) THz wave emission from argon in two-color laser field 2015 Chin. Phys. B 24 043203
|
[1] |
Hamstr H, Sullivan A, Gordon S, White W and Falcone R W 1993 Phys. Rev. Lett. 71 2725
|
[2] |
Dai J, Karpowicz N and Zhang X C 2009 Phys. Rev. Lett. 103 023001
|
[3] |
D'Amico C, Houard A, Franco M, Prade B, Mysyrowicz A, Couairon A and Tikhonchuk V T 2007 Phys. Rev. Lett. 98 235002
|
[4] |
Couairon A and Mysyrowicz A 2007 Phys. Rep. 441 47
|
[5] |
Zhou Z Y, Zhang D W, Zhao Z X and Yuan J M 2009 Phys. Rev. A 79 063413
|
[6] |
Lü Z H, Zhang D W, Meng C, Du X Y, Zhou Z Y, Huang Y D, Zhao Z X and Yuan J M 2013 J. Phys. B: At. Mol. Opt. Phys. 46 155602
|
[7] |
Zhang K Y, Du H W, Chen M and Sheng Z M 2012 Acta Phys. Sin. 61 160701 (in Chinese)
|
[8] |
Du H W, Chen M, Zhang K Y, Sheng Z M and Zhang J 2012 Acta Phys. Sin. 61 174205 (in Chinese)
|
[9] |
Cook D J and Hochstrasser R M 2000 Opt. Lett. 25 1210
|
[10] |
Chen Y Q, Yamaguchi M, Wang M F and Zhang X C 2007 Appl. Phys. Lett. 91 251116
|
[11] |
Kress M, Löffler T, Eden S, Thomson M and Roskos H G 2004 Opt. Lett. 29 1120
|
[12] |
Kim K Y, Glownia J H, Taylor A J and Rodriguez G 2007 Opt. Express 15 4577
|
[13] |
Löffler T and Roskos H G 2002 J. Appl. Phys. 91 2611
|
[14] |
Bartel T, Gaal P, Reimann K, Woerner M and Elsaesser T 2005 Opt. Lett. 30 2805
|
[15] |
Xie X, Dai J M and Zhang X C 2006 Phys. Rev. Lett. 96 075005
|
[16] |
Houard A, Liu Y, Mysyrowicz A and Leriche B 2007 Appl. Phys. Lett. 91 241105
|
[17] |
Spasenović M, Betz M, Costa L and Van Driel H M 2008 Phys. Rev. B 77 085201
|
[18] |
Wang D W, Zhang A Z, Yang L J and Dignam M M 2008 Phys. Rev. B 77 115307
|
[19] |
Shen Y C, Upadhya P C, Linfield E H, Beere H E and Davies A G 2004 Phys. Rev. B 69 235325
|
[20] |
Chuang S L, Schmitt-Rink S, Greene B I, Saeta P N and Levi A F J 1992 Phys. Rev. Lett. 68 102
|
[21] |
Yang L, Rosam B and Dignam M M 2005 Phys. Rev. B 72 115313
|
[22] |
Atanasov R, Haché A, Hughes J L P, Van Driel H M and Sipe J E 1996 Phys. Rev. Lett. 76 1703
|
[23] |
Li Y T, Wang W M, Li C and Sheng Z M 2012 Chin. Phys. B 21 095203
|
[24] |
Andreev A V and Stremoukhov S Y 2013 Phys. Rev. A 87 053416
|
[25] |
Corkum P B 1993 Phys. Rev. Lett. 71 1994
|
[26] |
Kulander K C, Schafer K J and Krause J L 1993 in Super Intense Laser-Atom Physics, eds. Piraux B, L'Huillier A and Rzazewski K (New York: Plenum) pp. 95-110
|
[27] |
Gildenburg V B and Vvedenskii N V 2007 Phys. Rev. Lett. 98 245002
|
[28] |
Kersting R, Unterrainer K, Strasser G, Kauffmann H F and Gornik E 1997 Phys. Rev. Lett. 79 3038
|
[29] |
Feit M D, Fleck J A Jr and Steiger A 1982 J. Comput. Phys. 47 412
|
[30] |
Fleck J A Jr, Morris J R and Feit M D 1976 Appl. Phys. (Berlin) 10 129
|
[31] |
Zhou X X and Lin C D 2000 Phys. Rev. A 61 053411
|
[32] |
Zhang D W, Lü Z H, Meng C, Du X Y, Zhou Z Y, Zhao Z X and Yuan J M 2012 Phys. Rev. Lett. 109 243002
|
[33] |
Zhao S F, Zhou X X and Jin C 2006 Acta Phys. Sin 55 4078 (in Chinese)
|
[34] |
Rea S C, Chen X and Burnett K 1994 Phys. Rev. A 50 1946
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|