Please wait a minute...
Chin. Phys. B, 2015, Vol. 24(1): 017802    DOI: 10.1088/1674-1056/24/1/017802
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Ordered silicon nanorod arrays with controllable geometry and robust hydrophobicity

Wang Zi-Wen (王子文), Cai Jia-Qi (蔡家琦), Wu Yi-Zhi (吴以治), Wang Hui-Jie (王会杰), Xu Xiao-Liang (许小亮)
Department of Physics, University of Science and Technology of China, Hefei 230026, China
Abstract  

Highly ordered silicon nanorod (SiNR) arrays with controllable geometry are fabricated via nanosphere lithography and metal-assisted chemical etching. It is demonstrated that the key to achieving a high-quality metal mask is to construct a non-close-packed template that can be removed with negligible damage to the mask. Hydrophobicity of SiNR arrays of different geometries is also studied. It is shown that the nanorod structures are effectively quasi-hydrophobic with a contact angle as high as 142°, which would be useful in self-cleaning nanorod-based device applications.

Keywords:  silicon nanorod array      hydrophobicity      self-cleaning      metal-assisted chemical etching  
Received:  28 June 2014      Revised:  04 August 2014      Accepted manuscript online: 
PACS:  78.67.Qa (Nanorods)  
  68.08.Bc (Wetting)  
Fund: 

Project supported by the National Natural Science Foundation of China (Grant No. 51272246) and the Scientific and Technological Research Foundation of Anhui Province, China (Grant No. 12010202035).

Corresponding Authors:  Xu Xiao-Liang     E-mail:  xlxu@ustc.edu.cn

Cite this article: 

Wang Zi-Wen (王子文), Cai Jia-Qi (蔡家琦), Wu Yi-Zhi (吴以治), Wang Hui-Jie (王会杰), Xu Xiao-Liang (许小亮) Ordered silicon nanorod arrays with controllable geometry and robust hydrophobicity 2015 Chin. Phys. B 24 017802

[1] Black C T 2005 Appl. Phys. Lett. 87 163116
[2] Xiang J, Lu W, Hu Y J, Wu Y, Yan H and Lieber C M 2006 Nature 441 489
[3] Kim K S, Lee H S, Yang J A, Jo M H and Hahn S K 2009 Nanotechnology 20 235501
[4] Knopfmacher O, Tarasov A, Fu W Y, Wipf M, Niesen B, Calame M and Schonenberger C 2010 Nano Lett. 10 2268
[5] Zhou X T, Hu J Q, Li C P, Ma D D D, Lee C S and Lee S T 2003 Chem. Phys. Lett. 369 220
[6] Wan Q, Li Q H, Chen Y J, Wang T H, He X L, Li J P and Lin C L 2004 Appl. Phys. Lett. 84 3654
[7] Zheng G F, Patolsky F, Cui Y, Wang W U and Lieber C M 2005 Nat. Biotech. 23 1294
[8] McAlpine M C, Ahmad H, Wang D W and Heath J R 2007 Nat. Mater. 6 379
[9] Gao Z Q, Agarwal A, Trigg A D, Singh N, Fang C, Tung C H, Fan Y, Buddharaju K D and Kong J M 2007 Anal. Chem. 79 3291
[10] Peng K Q, Xu Y, Wu Y, Yan Y J, Lee S T and Zhu J 2005 Small 1 1062
[11] Tian B, Zheng X L, Kempa T J, Fang Y, Yu N F, Yu G H, Huang J L and Lieber C M 2007 Nature 449 885
[12] Tsakalakos L, Balch J, Fronheiser J, Korevaar B A, Sulima O and Rand J 2007 Appl. Phys. Lett. 91 233117
[13] Peng K Q, Wang X and Lee S T 2008 Appl. Phys. Lett. 92 163103
[14] Putnam M C, Boettcher S W, Kelzenberg M D, Turner-Evans D B, Spurgeon J M, Warren E L, Briggs R M, Lewis N S and Atwater H A 2010 Energy & Environmental Science 3 1037
[15] Liang L, Xu Q F, Hu M L, Sun H, Xiang G H and Zhou L B 2013 Acta Phys. Sin. 62 37301 (in Chinese)
[16] Gudiksen M S, Lauhon L J, Wang J, Smith D C and Lieber C M 2002 Nature 415 617
[17] Hochbaum A I, Fan R, He R R and Yang P D 2005 Nano Lett. 5 457
[18] Wang Y W, Schmidt V, Senz S and Gösele U 2006 Nat. Nanotech. 1 186
[19] Lee S T, Wang N, Zhang Y F and Tang Y H 1999 MRS Bull. 24 36
[20] Zhang R Q, Lifshitz Y and Lee S T 2003 Adv. Mater. 15 635
[21] Yao Y, Li F H and Lee S T 2005 Chem. Phys. Lett. 406 381
[22] Beckman R A, Johnston-Halperin E, Melosh N A, Luo Y, Green J E and Heath J R 2004 J. Appl. Phys. 96 5921
[23] Choi D G, Yu H K, Jang S G and Yang S M 2004 J. Am. Chem. Soc. 126 7019
[24] Tsakalakos L, Balch J, Fronheiser J, Korevaar B, Sulima O and Rand J 2007 Appl. Phys. Lett. 91 233117
[25] Peng K Q, Zhang M L, Lu A J, Wong N B, Zhang R Q and Lee S T 2007 Appl. Phys. Lett. 90 163123
[26] Huang Z P, Fang H and Zhu J 2007 Adv. Mater. 19 744
[27] Peng K Q, Lu A J, Zhang R Q and Lee S T 2008 Adv. Funct. Mater. 18 3026
[28] Zhang M L, Peng K Q, Fan X, Jie J S, Zhang R Q, Lee S T and Wong N B 2008 J. Phys. Chem. C 112 4444
[29] Chern W, Hsu K, Chun I S, Azeredo B P d, Ahmed N, Kim K H, Zuo J M, Fang N, Ferreira P and Li X L 2010 Nano Lett. 10 1582
[30] Huang Z P, Zhang X X, Reiche M, Liu L F, Lee W, Shimizu T, Senz S and Goösele U 2008 Nano Lett. 8 3046
[31] Cassie A B D and Baxter S 1944 Transactions of the Faraday Society 40 546
[32] Wu Y Z, Zhang C, Yuan Y, Wang Z W, Shao W J, Wang H J and Xu X L 2013 Langmuir 29 14017
[33] Zhu J, Hsu C M, Yu Z F, Fan S H and Cui Y 2009 Nano Lett. 10 1979
[34] Shiu J Y, Kuo C W, Chen P L and Mou C Y 2004 Chem. Mater. 16 561
[35] Park Y B, Im H, Im M and Choi Y K 2011 J. Mater. Chem. 21 633
[36] Lin Y R, Wang H P, Lin C A and He J H 2009 J. Appl. Phys. 106 114310
[37] Dai Y A, Chang H C, Lai K Y, Lin C A, Chung R J, Lin G R and He J H 2010 J. Mater. Chem. 20 10924
[38] Lin Y R, Lai K Y, Wang H P and He J H 2010 Nanoscale 2 2765
[39] Lai K Y, Lin Y R, Wang H P and He J H 2011 Cryst. Eng. Comm. 13 1014
[40] Fan J G, Tang X J and Zhao Y P 2004 Nanotechnology 15 501
[41] Yang Z, Dun Z L, Hu L Q, Wu Y, Feng H Y, Qi Y B, Yang Y M and Xu X L 2011 J. Funct. Mater. 42 164
[42] Gong M G, Xu X L, Yang Z, Liu L, Li H and Zhang H 2008 J. Funct. Mater. 39 1906
[43] Gong M G, Xu X L, Cao Z L, Liu Y Y and Zhu H M 2009 Acta Phys. Sin. 58 1885 (in Chinese)
[44] Yang Z, Xu X L, Gong M G, Liu L and Liu Y S 2010 Chin. Phys. B 19 126103
[45] Gong M G, Liu Y Y and Xu X L 2010 Chin. Phys. B 19 106801
[46] Gong M G, Xu X L, Yang Z, Liu Y S and Liu L 2010 Chin. Phys. B 19 056701
[47] Gong M G, Xu X L, Yang Z, Liu Y Y, Lv H Y and Lv L 2009 Nanotechnology 20 165602
[48] Gong M G, Xu X L, Yang Z, Liu Y S, Lv H F and Liu L 2010 J. Nanosci. Nanotech. 10 7762
[49] Yang Z, Wu Y Z, Ye Y F, Gong M G and Xu X L 2012 Chin. Phys. B 21 126801
[1] A comparative study of the self-propelled jumping capabilities of coalesced droplets on RTV surfaces and superhydrophobic surfaces
Sheng-Wu Wang(王晟伍), Lu Peng(彭璐), Jun-Wu Chen(陈俊武), and Lee Li(李黎). Chin. Phys. B, 2021, 30(4): 046501.
[2] Modulation and control of DNA charge inversion
Yan-Wei Wang(王艳伟), Guang-Can Yang(杨光参). Chin. Phys. B, 2017, 26(12): 128706.
[3] Fabrication of CoFe2O4 ferrite nanowire arrays in porous silicon template and their local magnetic properties
Hui Zheng(郑辉), Man-Gui Han(韩满贵), Long-Jiang Deng(邓龙江). Chin. Phys. B, 2016, 25(2): 026201.
[4] Residual occurrence and energy property of proteins in HNP model
Jiang Zhou-Ting (姜舟婷), Dou Wen-Hui (窦文辉), Shen Yu (沈瑜), Sun Ting-Ting (孙婷婷), Xu Peng (徐鹏). Chin. Phys. B, 2015, 24(11): 116802.
[5] Fabrication of pillar-array superhydrophobic silicon surface and thermodynamic analysis on the wetting state transition
Liu Si-Si (刘思思), Zhang Chao-Hui (张朝辉), Zhang Han-Bing (张寒冰), Zhou Jie (周杰), He Jian-Guo (何建国), Yin Heng-Yang (尹恒洋). Chin. Phys. B, 2013, 22(10): 106801.
[6] A facile way to fabricate aluminum sheet with superhydrophobic and self-cleaning properties
Yang Zhou (杨周), Wu Yi-Zhi (吴以治), Ye Yi-Fan (叶逸凡), Gong Mao-Gang (公茂刚), Xu Xiao-Liang (许小亮). Chin. Phys. B, 2012, 21(12): 126801.
[7] Statistical interior properties of globular proteins
Jiang Zhou-Ting(姜舟婷), Zhang Lin-Xi(章林溪), Sun Ting-Ting(孙婷婷), and Wu Tai-Quan(吴太权). Chin. Phys. B, 2009, 18(10): 4580-4590.
No Suggested Reading articles found!