Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(11): 114701    DOI: 10.1088/1674-1056/23/11/114701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Bifurcation phenomena and control for magnetohydrodynamic flows in a smooth expanded channel

G. C. Layeka, Mani Shankar Mandalb, H. A. Khalafc
a Department of Mathematics, The University of Burdwan, Burdwan 713104, India;
b Department of Mathematics, Krishnagar Govt. College, Krishnagar, Nadia 741101, India;
c Thi-Qar University, Marshes Research Center, Thi-Qar, Iraq
Abstract  This work reports the effects of magnetic field on an electrically conducting fluid with low electrical conductivity flowing in a smooth expanded channel. The governing nonlinear magnetohydrodynamic (MHD) equations in induction-free situations are derived in the framework of MHD approximations and solved numerically using the finite-difference technique. The critical values of Reynolds number (based on upstream mean velocity and channel height) for symmetry breaking bifurcation for a sudden expansion channel (1:4) is about 36, whereas the value in the case of the smooth expansion geometry used in this work is obtained as 298, approximately (non-magnetic case). The flow of an electrically conducting fluid in the presence of an externally applied constant magnetic field perpendicular to the plane of the flow is reduced significantly depending on the magnetic parameter (M). It is found that the critical value of Reynolds number for smooth expansion (1:4) is about 475 for the magnetic parameter M=2. The separating regions developed behind the smooth symmetric expansion are decreased in length for increasing values of the magnetic parameter. The bifurcation diagram is shown for a symmetric smoothly expanding channel. It is noted that the critical values of Reynolds number increase with increasing magnetic field strength.
Keywords:  weakly electrically conducting fluid      flow bifurcation      asymmetric flow      smooth expansion  
Received:  16 January 2014      Revised:  17 April 2014      Accepted manuscript online: 
PACS:  47.15.-x (Laminar flows)  
  47.85.L- (Flow control)  
  47.85.-g (Applied fluid mechanics)  
Fund: Project support by the UGC (SAP), DSA-I in the Mathematics Department, Burdwan University, India.
Corresponding Authors:  Mani Shankar Mandal     E-mail:  manimath@yahoo.com

Cite this article: 

G. C. Layek, Mani Shankar Mandal, H. A. Khalaf Bifurcation phenomena and control for magnetohydrodynamic flows in a smooth expanded channel 2014 Chin. Phys. B 23 114701

[1] Armaly B F, Durst F, Pereira J C F and Schonung B 1983 J. Fluid Mech. 127 473
[2] Durst F, Melling A and Whitelaw J H 1974 J. Fluid Mech. 64 111
[3] Durst F, Pereira J C and Tropea C 1993 J. Fluid Mech. 248 567
[4] Cherdron W, Durst F and Whitelaw J H 1978 J. Fluid Mech. 84 13
[5] Fearn R M, Mullin T and Cliffe K A 1990 J. Fluid Mech. 211 595
[6] Drikakis D 1997 Phys. Fluid. 9 76
[7] Wille R and Fernholz H 1965 J. Fluid Mech. 23 801
[8] Sobey I J and Drazin P G 1986 J. Fluid Mech. 171 263
[9] Borgas M S and Pedley T J 1990 J. Fluid Mech. 214 229
[10] Shapira M, Degani D and Weihs D 1990 Comput. Fluids 18 239
[11] Rocha G N, Poole R J and Oliveira P J 2007 J. Non-Newtonian Fluid Mech. 141 1
[12] Gad-el-Hak M and Bushnell D M 1991 J. Fluids Engg. 113 5
[13] Bhattacharyya K and Layek G C 2010 Chem. Engg. Commun. 197 1527
[14] Bhattacharyya K, Mukhopadhyay S and Layek G C 2011 Chin. Phys. Lett. 28 024701
[15] Bhattacharyya K, Mukhopadhyay S and Layek G C 2012 Chem. Engg. Commun. 199 368
[16] Nadeem S and Haq R U 2014 J. Comput. Theor. Nanoscience 11 32
[17] Nadeem S, Haq R U and Akbar N S 2014 Nanotechnology 13 109
[18] Midya C, Layek G C, Gupta A S and Mahapatra T R 2003 J. Fluids Engg. 125 952
[19] Bandyopadhyay S and Layek G C 2012 Commun. Nonlinear Sci. Numer. Simult. 17 2434
[20] Layek G C and Midya C 2007 Magnetohydrodynamics 4 3
[21] Holstein P A, Delettrez J, Skupsky S and Matte J P 1986 J. Appl. Phys. 60 2296
[22] Jungclaus G 1960 Rev. Mod. Phys. 32 823
[23] Layek G C, Kryzhevich S G, Gupta A S and Reza M 2013 Z. Angew. Math. Phys. 64 123
[24] Nadeem S, Haq R U and Lee C 2012 Scientia Iranica. 19 1550
[25] Nadeem S, Haq R U, Akbar N S and Khan Z H 2013 Alexandria Engg. J. 52 577
[26] Akbar N S, Nadeem S, Haq R U and Khan Z H 2013 Chin. J. Aeronautics 26 1389
[27] Nadeem S, Haq R U and Khan Z H 2014 J. Taiwan Institute Chem. Eng. 45 121
[28] Bhattacharyya K and Layek G C 2012 Meccanica 47 1043
[29] Bhattacharyya K and Layek G C 2014 Phys. Res. Int. 2014 592536
[30] Zikanov O and Thess A 1998 J. Fluid Mech. 358 299
[31] Cowling T G 1957 Magnetohydrodynamics (New York: John Wiley and Sons)
[32] Pedrizzetti G 1996 J. Fluid Mech. 310 89
[33] Layek G C and Midya C 2007 Commun. Nonlinear Sci. Numer. Simult. 12 745
[34] Peyret R and Taylor T D Computational Methods for Fluid Flow (Berlin, Heidelberg: Springer-Verlag)
[1] Hemodynamics of aneurysm intervention with different stents
Peichan Wu(吴锫婵), Yuhan Yan(严妤函), Huan Zhu(朱欢), Juan Shi(施娟), and Zhenqian Chen(陈振乾). Chin. Phys. B, 2022, 31(6): 064701.
[2] Numerical study on permeability characteristics of fractal porous media
Yongping Huang(黄永平), Feng Yao(姚峰), Bo Zhou(周博), Chengbin Zhang(张程宾). Chin. Phys. B, 2020, 29(5): 054701.
[3] Gas flow characteristics of argon inductively coupled plasma and advections of plasma species under incompressible and compressible flows
Shu-Xia Zhao(赵书霞), Zhao Feng(丰曌). Chin. Phys. B, 2018, 27(12): 124701.
[4] Physical and chemical effects of phosphorus-containing compounds on laminar premixed flame
Yongfeng Yin(殷永丰), Yong Jiang(蒋勇), Rong Qiu(邱榕), Caiyi Xiong(熊才溢). Chin. Phys. B, 2018, 27(9): 094701.
[5] Induced magnetic field stagnation point flow of nanofluid past convectively heated stretching sheet with Buoyancy effects
Tanzila Hayat, S Nadeem. Chin. Phys. B, 2016, 25(11): 114701.
[6] Influence of colloidal particle transfer on the quality of self-assembling colloidal photonic crystal under confined condition
Zhao Yong-Qiang (赵永强), Li Juan (李娟), Liu Qiu-Yan (刘秋艳), Dong Wen-Jun (董文钧), Chen Ben-Yong (陈本永), Li Chao-Rong (李超荣). Chin. Phys. B, 2015, 24(2): 028104.
[7] Partial slip effect on non-aligned stagnation point nanofluid over a stretching convective surface
S. Nadeem, Rashid Mehmood, Noreen Sher Akbar. Chin. Phys. B, 2015, 24(1): 014702.
[8] Dual solutions in boundary layer flow of Maxwell fluid over a porous shrinking sheet
Krishnendu Bhattacharyya, Tasawar Hayat, Ahmed Alsaedi. Chin. Phys. B, 2014, 23(12): 124701.
[9] Flow and heat transfer of a nanofluid over a hyperbolically stretching sheet
A. Ahmad, S. Asghar, A. Alsaedi. Chin. Phys. B, 2014, 23(7): 074401.
[10] Slip effects on streamline topologies and their bifurcations for peristaltic flows of a viscous fluid
Z. Asghar, N. Ali. Chin. Phys. B, 2014, 23(6): 064701.
[11] MHD flow of nanofluids over an exponentially stretching sheet in a porous medium with convective boundary conditions
T. Hayat, M. Imtiaz, A. Alsaedi, R. Mansoor. Chin. Phys. B, 2014, 23(5): 054701.
[12] A fractal approach to low velocity non-Darcy flow in a low permeability porous medium
Cai Jian-Chao (蔡建超). Chin. Phys. B, 2014, 23(4): 044701.
[13] New homotopy analysis transform method for solving the discontinued problems arising in nanotechnology
M. M. Khader, Sunil Kumar, S. Abbasbandy. Chin. Phys. B, 2013, 22(11): 110201.
[14] Melting phenomenon in magneto hydro-dynamics steady flow and heat transfer over a moving surfacein the presence of thermal radiation
Reda G. Abdel-Rahman, M. M. Khader, Ahmed M. Megahed. Chin. Phys. B, 2013, 22(3): 030202.
[15] Space-charge limiting currents for magnetically focused intense relativistic electron beams
Li Jian-Qing(李建清) and Mo Yuan-Long(莫元龙). Chin. Phys. B, 2007, 16(9): 2716-2720.
No Suggested Reading articles found!