Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 090202    DOI: 10.1088/1674-1056/23/9/090202
GENERAL Prev   Next  

A meshless algorithm with moving least square approximations for elliptic Signorini problems

Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林)
College of Mathematics Science, Chongqing Normal University, Chongqing 400047, China
Abstract  Based on the moving least square (MLS) approximations and the boundary integral equations (BIEs), a meshless algorithm is presented in this paper for elliptic Signorini problems. In the algorithm, a projection operator is used to tackle the nonlinear boundary inequality conditions. The Signorini problem is then reformulated as BIEs and the unknown boundary variables are approximated by the MLS approximations. Accordingly, only a nodal data structure on the boundary of a domain is required. The convergence of the algorithm is proven. Numerical examples are given to show the high convergence rate and high computational efficiency of the presented algorithm.
Keywords:  meshless method      Signorini problem      moving least square approximations      convergence  
Received:  02 December 2013      Revised:  13 March 2014      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  02.30.Em (Potential theory)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11101454), the Natural Science Foundation of Chongqing CSTC, China (Grant No. cstc2014jcyjA00005), and the Program of Innovation Team Project in University of Chongqing City, China (Grant No. KJTD201308).
Corresponding Authors:  Li Xiao-Lin     E-mail:  lxlmath@163.com

Cite this article: 

Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林) A meshless algorithm with moving least square approximations for elliptic Signorini problems 2014 Chin. Phys. B 23 090202

[1] Signorini A 1993 Annali della Scuola Normale superiore di Pisa, Classe di Scienze 2 231
[2] Fichera G 1964 Mem. Accad. Naz. Lincei. 5 91
[3] Aitchison J M, Elliott C M and Ockendon J R 1983 IMA J. Appl. Math. 30 269
[4] Aitchison J M, Lacey A A and Shillor M 1984 IMA J. Appl. Math. 33 17
[5] Howison D, Morgan J D and Ockendon J R 1997 SIAM Rev. 39 221
[6] Ito K and Kunisch K 2008 Appl. Math. 53 445
[7] Aitchison J M and Poole M W 1998 J. Comput. Appl. Math. 94 55
[8] Poullikkas A, Karageorghis A and Georgiou G 1998 IMA J. Numer. Anal. 18 273
[9] Spann W 1993 Numer. Math. 65 337
[10] Zhang S G and Zhu J L 2012 Eng. Anal. Bound. Elem. 36 112
[11] Zhang S G and Zhu J L 2013 Eng. Anal. Bound. Elem. 37 176
[12] Lancaster P and Salkauskas K 1981 Math. Comput. 37 141
[13] Cheng Y M and Chen M J 2003 Acta Mech. Sin. 35 181 (in Chinese)
[14] Wang J F, Sun F X and Cheng Y M 2012 Chin. Phys. B 21 090204
[15] Sun F X, Wang J F and Cheng Y M 2013 Chin. Phys. B 22 120203
[16] Wang J F and Cheng Y M 2013 Chin. Phys. B 22 030208
[17] Wang Q F, Dai B D and Li Z F 2013 Chin. Phys. B 22 080203
[18] Shi T Y, Cheng R J and Ge H X 2013 Chin. Phys. B 22 060210
[19] Wang F, Lin G, Zheng B J and Hu Z Q 2013 Chin. Phys. B 22 060206
[20] Li Q H, Chen S S and Zeng J H 2013 Chin. Phys. B 22 120204
[21] Li S L and Li X L 2014 Chin. Phys. B 23 028702
[22] Mukherjee Y X and Mukherjee S 1997 Int. J. Numer. Methods Eng. 40 797
[23] Miao Y, He T, Yang Q and Zheng J 2010 Eng. Anal. Bound. Elem. 34 755
[24] Wang Q, Miao Y and Zhu H 2013 Comput. Mech. 51 885
[25] Miao Y, Li W, Lv J and Zhu H 2013 Eng. Anal. Bound. Elem. 37 1311
[26] Cheng Y M and Peng M J 2005 Sci. China: Phys. Mech. Astron. 48 641
[27] Ren H P, Cheng Y M and Zhang W 2010 Sci. China: Phys. Mech. Astron. 53 758
[28] Wang J F, Sun F X and Cheng Y M 2013 Int. J. Comput. Methods 10 6
[29] Li X L and Zhu J L2009 J. Comput. Appl. Math. 230 314
[30] Li X L 2011 Appl. Numer. Math. 61 1237
[31] Li X L and Li S L 2013 Chin. Phys. B 22 080204
[32] Noor M A 2010 J. Appl. Math. Comput. 32 83
[33] Zhu J L and Yuan Z Q 2009 Boundary Element Analysis (Beijing: Science Press) (in Chinese)
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] A meshless algorithm with the improved moving least square approximation for nonlinear improved Boussinesq equation
Yu Tan(谭渝) and Xiao-Lin Li(李小林). Chin. Phys. B, 2021, 30(1): 010201.
[3] Truncated series solutions to the (2+1)-dimensional perturbed Boussinesq equation by using the approximate symmetry method
Xiao-Yu Jiao(焦小玉). Chin. Phys. B, 2018, 27(10): 100202.
[4] A novel stable value iteration-based approximate dynamic programming algorithm for discrete-time nonlinear systems
Yan-Hua Qu(曲延华), An-Na Wang(王安娜), Sheng Lin(林盛). Chin. Phys. B, 2018, 27(1): 010203.
[5] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[6] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[7] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[8] Optical simulation of in-plane-switching blue phase liquid crystal display using the finite-difference time-domain method
Hu Dou(窦虎), Hongmei Ma(马红梅), Yu-Bao Sun(孙玉宝). Chin. Phys. B, 2016, 25(9): 094221.
[9] Dynamic properties of chasers in a moving queue based on a delayed chasing model
Ning Guo(郭宁), Jian-Xun Ding(丁建勋), Xiang Ling(凌翔), Qin Shi(石琴), Reinhart Kühne. Chin. Phys. B, 2016, 25(5): 050505.
[10] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[11] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[12] A local energy-preserving scheme for Klein–Gordon–Schrödinger equations
Cai Jia-Xiang (蔡加祥), Wang Jia-Lin (汪佳玲), Wang Yu-Shun (王雨顺). Chin. Phys. B, 2015, 24(5): 050205.
[13] Analysis for flow of Jeffrey fluid with nanoparticles
T. Hayat, Sadia Asad, A. Alsaedi. Chin. Phys. B, 2015, 24(4): 044702.
[14] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[15] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
No Suggested Reading articles found!