Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(9): 094209    DOI: 10.1088/1674-1056/23/9/094209
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Fabrication of large-scale ripples on fluorine-doped tin oxide films by femtosecond laser irradiation

Han Yan-Hua (韩艳华), Li Yan (李岩), Zhao Xiu-Li (赵秀丽), Qu Shi-Liang (曲士良)
Department of Optoelectronics Science, Harbin Institute of Technology at Weihai, Weihai 264209, China
Abstract  The large-scale uniform self-organized ripples are fabricated on fluorine-doped tin oxide (FTO) coated glass by femtosecond laser. They can be smoothly linked in a horizontal line with the moving of XYZ stage by setting its velocity and the repetition rate of the laser. The ripple-to-ripple linking can also be realized through line-by-line scanning on a vertical level. The mechanism analysis shows that the seeding effect plays a key role in the linking of ripples.
Keywords:  femtosecond laser      ripples      FTO film      seeding effect  
Received:  25 February 2014      Revised:  14 April 2014      Accepted manuscript online: 
PACS:  42.65.Re (Ultrafast processes; optical pulse generation and pulse compression)  
  42.82.Cr (Fabrication techniques; lithography, pattern transfer)  
  42.62.-b (Laser applications)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11304065, 11304064, and 11374077), the Natural Scientific Research Innovation Foundation in Harbin Institute of Technology, China (Grant No. HIT. NSRIF. 2011106), the Scientific Research Foundation of Harbin Institute of Technology at Weihai, China (Grant No. HIT (WH) X201103), and the Science and Technology Foundation of Shandong Province, China (Grant No. ZR2013AQ002).
Corresponding Authors:  Qu Shi-Liang     E-mail:  slqu@hit.edu.cn

Cite this article: 

Han Yan-Hua (韩艳华), Li Yan (李岩), Zhao Xiu-Li (赵秀丽), Qu Shi-Liang (曲士良) Fabrication of large-scale ripples on fluorine-doped tin oxide films by femtosecond laser irradiation 2014 Chin. Phys. B 23 094209

[1] Tachan Z, Ruhle S and Zaban A 2010 Solar Energy Mater. Solar Cell. 94 317
[2] Wang F L, Subbaiyan N K, Wang Q, Rochford C, Xu G W, Lu R T, Elliot A, D'Souza F, Hui R Q and Wu J 2012 ACS Appl. Mater. Interfaces 4 1565
[3] Wang F L, Wang Q, Xu G W, Hui R Q and Wu J 2013 J. Phys. Chem. C 117 11725
[4] Bian Q M, Yu X M, Zhao B Z, Chang Z G and Lei S T 2013 Opt. Laser Technol. 45 395
[5] Cheng C W, Shen W C, Lin C Y, Lee Y J and Chen J S 2010 Appl. Phys. A 101 243
[6] Wang C, Wang H, Luo C and Leu J 2012 Appl. Phys. Lett. 101 101911
[7] Zhou M, Yuan D Q, Zhang W, Shen J, Li B J, Song J and Cai L 2012 Chin. Phys. Lett. 26 037901
[8] Chen H L, Huang K T, Lin C H, Wang WY and Fan W 2007 Microelectronic Eng. 84 750
[9] Shimotsuma Y, Sakakura M, Kazansky P G, Beresna M, Qiu J, Miura K and Hirao K 2010 Adv. Mater. 22 4039
[10] Zhao Q, Malzer S and Wang L 2007 Opt. Lett. 32 1932
[11] Tomita T, Fukumori Y, Kinoshita K, Matsuo S and Hashimoto S 2008 Appl. Phys. Lett. 92 013104
[12] Golosov E V, Ionin A A, Kolobov Y R, Kudryashov S I, Ligachev A E, Makarov S V, Novoselov Y N, Seleznev L V, Sinitsyn D V and Sharipov A R 2011 Phys. Rev. B 83 115426
[13] Taylor R S, Hnatovsky C, Simova E, Rajeev P P, Rayner D M and Corkum P B 2007 Opt. Lett. 32 2888
[14] Huang M, Zhao F L, Cheng Y, Xu N and Xu Z 2009 ACS Nano 3 4062
[15] Garrelie F, Colombier J P, Pigeon F, Tonchev S, Faure N, Bounhalli M, Reynaud S and Parriaux O 2011 Opt. Express 19 9035
[16] Shimotsuma Y, Kazansky P G, Qiu J and Hirao K 2003 Phys. Rev. Lett. 91 247405
[17] Golosov E V, Ionin A A, Kolobov Y R, Kudryashov S I, Ligachev A E, Makarov S V, Novoselov Y N, Seleznev L V, Sinitsyn D V and Sharipov A R 2011 Phys. Rev. B 83 115426
[18] Guo X D, Li R X, Hang Y, Xu Z Z, Yu B K, Dai Y, Lu B and Sun X W 2009 Appl. Phys. A 94 423
[19] Sakabe S, Hashida M, Tokita S, Namba S and Okamuro K 2009 Phys. Rev. B 79 033409
[20] Han Y H and Qu S 2010 Appl. Phys. A 98 167
[1] Measurement of CO, HCN, and NO productions in atmospheric reaction induced by femtosecond laser filament
Xiao-Dong Huang(黄晓东), Meng Zhang(张梦), Lun-Hua Deng(邓伦华), Shan-Biao Pang(庞山彪), Ke Liu(刘珂), and Huai-Liang Xu(徐淮良). Chin. Phys. B, 2022, 31(9): 097801.
[2] Experimental study on gas production and solution composition during the interaction of femtosecond laser pulse and liquid
Yichun Wang(王奕淳), Han Wu(吴寒), Wenkang Lu(陆文康), Meng Li(李萌), Ling Tao(陶凌), and Xiuquan Ma(马修泉). Chin. Phys. B, 2022, 31(7): 070204.
[3] Influence of polarization of laser beam on emission intensity of femtosecond laser-induced breakdown spectroscopy
Lan Yang(杨岚), Miao Liu(刘淼), Yi-Tong Liu(刘奕彤), Qing-Xue Li(李庆雪), Su-Yu Li(李苏宇), Yuan-Fei Jiang(姜远飞), An-Min Chen(陈安民), Ming-Xing Jin(金明星). Chin. Phys. B, 2020, 29(6): 065203.
[4] Research progress of femtosecond surface plasmon polariton
Yulong Wang(王玉龙), Bo Zhao(赵波), Changjun Min(闵长俊), Yuquan Zhang(张聿全), Jianjun Yang(杨建军), Chunlei Guo(郭春雷), Xiaocong Yuan(袁小聪). Chin. Phys. B, 2020, 29(2): 027302.
[5] Orientation-dependent depolarization of supercontinuum in BaF2 crystal
Zi-Xi Li(李子熙), Cheng Gong(龚成), Tian-Jiao Shao(邵天骄), Lin-Qiang Hua(华林强), Xue-Bin Bian(卞学滨), Xiao-Jun Liu(柳晓军). Chin. Phys. B, 2020, 29(1): 014212.
[6] Etching-assisted femtosecond laser microfabrication
Monan Liu(刘墨南), Mu-Tian Li(李木天), Han Yang(杨罕), Hong-Bo Sun(孙洪波). Chin. Phys. B, 2018, 27(9): 094212.
[7] Time-resolved shadowgraphs and morphology analyses of aluminum ablation with multiple femtosecond laser pulses
Zehua Wu(吴泽华), Nan Zhang(张楠), Xiaonong Zhu(朱晓农), Liqun An(安力群), Gangzhi Wang(王刚志), Ming Tan(谭明). Chin. Phys. B, 2018, 27(7): 077901.
[8] Polarization control of multi-photon absorption under intermediate femtosecond laser field
Wenjing Cheng(程文静), Pei Liu(刘沛), Guo Liang(梁果), Ping Wu(吴萍), Tianqing Jia(贾天卿), Zhenrong Sun(孙真荣), Shian Zhang(张诗按). Chin. Phys. B, 2017, 26(8): 083201.
[9] Numerical and experimental analysis of long period gratings in wavelength scale elliptical microfibers
Wa Jin(金娃), Wei-Hong Bi(毕卫红), Guang-Wei Fu(付广伟). Chin. Phys. B, 2017, 26(10): 100702.
[10] Electronic transport properties of silicon junctionless nanowire transistors fabricated by femtosecond laser direct writing
Liu-Hong Ma(马刘红), Wei-Hua Han(韩伟华), Hao Wang(王昊), Qi-feng Lyu(吕奇峰), Wang Zhang(张望), Xiang Yang(杨香), Fu-Hua Yang(杨富华). Chin. Phys. B, 2016, 25(6): 068103.
[11] Coulomb explosion of CS2 molecule under an intense femtosecond laser field
Xiao Wang(王潇), Jian Zhang(张健), Shi-An Zhang(张诗按), Zhen-Rong Sun(孙真荣). Chin. Phys. B, 2016, 25(5): 053301.
[12] Frequency doubled femtosecond Ti:sapphire laser with an assisted enhancement cavity
Jin-Wei Zhang(张金伟), Hai-Nian Han(韩海年), Lei Hou(侯磊), Long Zhang(张龙),Zi-Jiao Yu(于子蛟), De-Hua Li(李德华), Zhi-Yi Wei(魏志义). Chin. Phys. B, 2016, 25(1): 014205.
[13] Enhancement of third harmonic generation in air filamentation using obstacles
Liu Xiao-Long (刘晓龙), Lu Xin (鲁欣), Du Zhi-Gui (杜志贵), Ma Jing-Long (马景龙), Li Yu-Tong (李玉同), Zhang Jie (张杰). Chin. Phys. B, 2015, 24(3): 034207.
[14] Charge trapping in surface accumulation layer of heavily doped junctionless nanowire transistors
Ma Liu-Hong (马刘红), Han Wei-Hua (韩伟华), Wang Hao (王昊), Yang Xiang (杨香), Yang Fu-Hua (杨富华). Chin. Phys. B, 2015, 24(12): 128101.
[15] Femtosecond filamentation induced fluorescence technique for atmospheric sensing
Yuan Shuai (袁帅), Chin See Leang (陈瑞良), Zeng He-Ping (曾和平). Chin. Phys. B, 2015, 24(1): 014208.
No Suggested Reading articles found!