Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(7): 070205    DOI: 10.1088/1674-1056/23/7/070205
GENERAL Prev   Next  

Impulsive effect on exponential synchronization of neural networks with leakage delay under sampled-data feedback control

S. Lakshmanana b, Ju H. Parkb, Fathalla A. Rihana, R. Rakkiyappanc
a Department of Mathematical Sciences, College of Science, UAE University, 17551, Al Ain, UAE;
b Nonlinear Dynamics Group, Department of Electrical Engineering, Yeungnam University, 280 Daehak-Ro, Kyongsan 712-749, Republic of Korea;
c Department of Mathematics, Bharathiar University, Coimbatore - 641 046, Tamilnadu, India
Abstract  We consider the impulsive effect on the exponential synchronization of neural networks with leakage delay under the sampled-data feedback control. We use an appropriate Lyapunov-Krasovskii functional combined with the input delay approach and some inequality techniques to derive sufficient conditions that ensure the exponential synchronization of the delayed neural network. The conditions are formulated in terms of the leakage delay, the sampling period, and the exponential convergence rate. Numerical examples are given to demonstrate the usefulness and the effectiveness of the results.
Keywords:  exponential synchronization      impulsive effect      leakage delay      sampled-data feedback  
Received:  20 November 2013      Revised:  22 December 2013      Accepted manuscript online: 
PACS:  02.30.Ks (Delay and functional equations)  
  05.45.Gg (Control of chaos, applications of chaos)  
Fund: Project supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. 2013R1A1A2A10005201) and the UAE University (Grant No. NRF Project UAEU-NRF-7-20886).
Corresponding Authors:  Ju H. Park     E-mail:  jessie@ynu.ac.kr
About author:  02.30.Ks; 05.45.Gg

Cite this article: 

S. Lakshmanan, Ju H. Park, Fathalla A. Rihan, R. Rakkiyappan Impulsive effect on exponential synchronization of neural networks with leakage delay under sampled-data feedback control 2014 Chin. Phys. B 23 070205

[1] Zhao Y, Zhang R and Shao C 2013 International Journal of Innovative Computing, Information and Control 9 4343
[2] Chun-Biao G, Matja P and Qing-Yun W 2010 Chin. Phys. B 19 040508
[3] Wu Z G, Shi P, Su H and Chu J 2011 IEEE Trans. Neural Netw. 22 1566
[4] Liu Y, Yin Y and Liu F 2013 International Journal of Innovative Computing, Information and Control 9 8077
[5] Shen H, Xu S, Zhou J and Lu J 2011 International Journal of Systems Science 42 767
[6] Ahn C K and Song M K 2011 International Journal of Innovative Computing, Information and Control 7 1831
[7] Li Z, Xia Y and Cao X 2013 International Journal of Innovative Computing, Information and Control 9 753
[8] Milanovic V and Zaghloul M 1996 Int. J. Bifurcation Chaos 6 2571
[9] Fox J, Jayaprakash C, Wang D and Campbell S 2001 Neuralcomputing 13 1003
[10] Cuomo K M, Oppenheim A and Strogatz S H 1993 IEEE Trans. Circuits Syst. Ⅱ 40 626
[11] Liu P L 2013 International Journal of Innovative Computing, Information and Control 9 3341
[12] Pecora L M and Carroll T L 1990 Phys. Rev. Lett. 64 821
[13] Carroll T L and Pecora L M 1991 IEEE Trans. Circuit Syst. 38 453
[14] Sheng L and Yang H 2008 Neurocomputing 71 3666
[15] Hu C, Yu J, Jiang H and Teng Z 2010 Nonlinearity 23 2369
[16] Khadra A, Liu X and Shen X 2005 Automatica 41 1491
[17] Liu B, Liu X, Chen G and Wang H 2005 IEEE Trans. Circuits Syst. I 52 1431
[18] Gan Q 2012 Nonlinear Dyn. 69 2207
[19] Hu J, Chen S and Chen L 2005 Phys. Lett. A 339 455
[20] Huang T, Li C, Yu W and Chen G 2009 Nonlinearity 22 569
[21] Mao-Sheng W, Zhong-Huai H and Hou-Wen X 2006 Chin. Phys. B 15 2553
[22] Jian-Yi J and Le-Quan M 2009 Chin. Phys. Lett. 26 028702
[23] Cheng C J, Liao T L, Yan J J and Hwang C C 2006 IEEE Trans. Syst. Man. Cybern. B Cybern. 36 209
[24] Fang H, Marian W and Quan-Bao J 2009 Chin. Phys. B 18 482
[25] Lu H 2002 Phy. Lett. A 298 109
[26] Gilli M 1993 IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 40 849
[27] Ma Q, Xu S, Zou Y and Shi G 2012 Nonlinear Dyn. 67 2183
[28] Liu C, Li C and Duan S 2011 Int. J. Control. Autom. 9 1074
[29] Mahdavi N and Menhaj M B 2011 Int. J. Control. Autom. 9 104
[30] Li T, Wang T, Song A and Fei S 2011 Int. J. Control. Autom. 9 187
[31] Sun J 2004 Chaos Soliton. Fract. 21 143
[32] Li T, Fei S M, Zhu Q and Cong S 2008 Neurocomputing 71 3005
[33] Xu S Y, Lam J, Ho D W C and Zou Y 2005 J. Comput. Appl. Math. 183 16
[34] Ahmad B and Nieto J J 2008 Nonlinear Anal.: Real World Appl. 69 3291
[35] Lakshmikantham V, Bainov D D and Simeonov P S 1989 Theory of Impulsive Differential Equations (Singapore: World Scientific)
[36] Zhang H G, Ma T D, Fu J and Tong S C 2009 Chin. Phys. B 18 3742
[37] Li X and Fu X 2011 Commun. Nonlinear Sci. Numer. Simulat. 16 885
[38] Li X and Bohner M 2010 Math. Comput. Model. 52 643
[39] Yang Y and Cao J 2010 Nonlinear Anal.: Real World Appl. 11 1650
[40] Li X and Rakkiyappan R 2013 Commun. Nonlinear Sci. Numer. Simulat. 18 1515
[41] Zhang H, Ma T, Huang G B and Wang Z 2010 IEEE Trans. Syst. Man, Cybern. B Cybern. 40 831
[42] Zhang C K, He Y and Wu M 2010 Neurocomputing 74 265
[43] Fridman E 2010 Automatica 46 421
[44] Lam H K and Leung F H F 2007 IEEE Trans. Syst. Man. Cybern. B Cybern. 37 617
[45] Liu K and Fridman E 2012 Automatica 48 102
[46] Wu Z G, Park J H, Su H and Chu J 2012 Nonlinear Dyn. 69 2021
[47] Wu Z G, Shi P, Su H and Chu J 2012 IEEE Trans. Neural Netw. Learn. Syst. 23 1368
[48] Wu Z G, Shi P, Su H and Chu J 2013 IEEE Trans. Cybern. 43 1796
[49] Gan Q and Liang Y 2012 J. Franklin Inst. 349 1955
[50] Gopalsamy K 2007 J. Math. Anal. Appl. 325 1117
[51] Peng S 2010 Nonlinear Anal.: Real World Appl. 11 2141
[52] Li C and Huang T 2009 J. Franklin Inst. 346 366
[53] Li X and Cao J 2010 Nonlinearity 23 1709
[54] Li X, Fu X, Balasubramaniam P and Rakkiyappan R 2010 Nonlinear Anal.: Real World Appl. 11 4092
[55] Fu X, Li X and Akca H 2012 Arab. J. Math.
[56] Sun J, Liu G P and Chen J 2009 Int. J. Robust Nonlinear Control 19 1364
[57] Tian J and Zhong S 2011 Neurocomputing 74 3365
[58] Liu Z, Yu J, Xu D and Peng D 2013 Neurocomputing 99 283
[59] Naghshtabrizi P, Hespanha J P and Teel A R 2008 Syst. Control Lett. 57 378
[60] Xu S and Chen T 2003 Automatica 39 50
[1] New results for exponential synchronization of linearly coupled ordinary differential systems
Ping Tong(童评), Shi-Hua Chen(陈士华). Chin. Phys. B, 2017, 26(5): 050503.
[2] Exponential synchronization of chaotic Lur'e systems with time-varying delay via sampled-data control
R. Rakkiyappan, R. Sivasamy, S. Lakshmanan. Chin. Phys. B, 2014, 23(6): 060504.
[3] Exponential synchronization of complex dynamical networks with Markovian jumping parameters using sampled-data and mode-dependent probabilistic time-varying delays
R. Rakkiyappan, N. Sakthivel, S. Lakshmanan. Chin. Phys. B, 2014, 23(2): 020205.
[4] Cluster exponential synchronization of a class of complex networks with hybrid coupling and time-varying delay
Wang Jun-Yi (王军义), Zhang Hua-Guang (张化光), Wang Zhan-Shan (王占山), Liang Hong-Jing (梁洪晶). Chin. Phys. B, 2013, 22(9): 090504.
[5] Novel criteria for exponential synchronization of inner time-varying complex networks with coupling delay
Zhang Qun-Jiao(张群娇) and Zhao Jun-Chan(赵军产) . Chin. Phys. B, 2012, 21(4): 040502.
[6] Global exponential synchronization between Lü system and Chen system with unknown parameters and channel time-delay
Ma Tie-Dong (马铁东), Fu Jie (浮洁). Chin. Phys. B, 2011, 20(5): 050511.
[7] Pinning impulsive synchronization of stochastic delayed coupled networks
Tang Yang(唐漾), Wong W K(黃偉強), Fang Jian-An(方建安), and Miao Qing-Ying(苗清影) . Chin. Phys. B, 2011, 20(4): 040513.
[8] Global impulsive exponential synchronization of stochastic perturbed chaotic delayed neural networks
Zhang Hua-Guang(张化光), Ma Tie-Dong(马铁东), Fu Jie(浮洁), and Tong Shao-Cheng(佟绍成). Chin. Phys. B, 2009, 18(9): 3742-3750.
[9] Exponential synchronization of stochastic impulsive perturbed chaotic Lur'e systems with time-varying delay and parametric uncertainty
Ma Tie-Dong (马铁东), Zhang Hua-Guang (张化光), Fu Jie (浮洁). Chin. Phys. B, 2008, 17(12): 4407-4417.
[10] Linear matrix inequality approach to exponential synchronization of a class of chaotic neural networks with time-varying delays
Wu Wei(吴炜) and Cui Bao-Tong (崔宝同). Chin. Phys. B, 2007, 16(7): 1889-1896.
No Suggested Reading articles found!