Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(2): 028902    DOI: 10.1088/1674-1056/23/2/028902
INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY Prev   Next  

Optimal network structure to induce the maximal small-world effect

Zhang Zheng-Zhen (张争珍)a, Xu Wen-Jun (许文俊)a, Zeng Shang-You (曾上游)b, Lin Jia-Ru (林家儒)a
a Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China;
b College of Electronic Engineering, Guangxi Normal University, Guilin 541004, China
Abstract  In this paper, the general efficiency, which is the average of the global efficiency and the local efficiency, is defined to measure the communication efficiency of a network. The increasing ratio of the general efficiency of a small-world network relative to that of the corresponding regular network is used to measure the small-world effect quantitatively. The more considerable the small-world effect, the higher the general efficiency of a network with a certain cost is. It is shown that the small-world effect increases monotonically with the increase of the vertex number. The optimal rewiring probability to induce the best small-world effect is approximately 0.02 and the optimal average connection probability decreases monotonically with the increase of the vertex number. Therefore, the optimal network structure to induce the maximal small-world effect is the structure with the large vertex number (>500), the small rewiring probability (≈ 0.02) and the small average connection probability (<0.1). Many previous research results support our results.
Keywords:  small-world network      communication efficiency      optimal network structure  
Received:  25 February 2013      Revised:  24 May 2013      Accepted manuscript online: 
PACS:  89.75.Fb (Structures and organization in complex systems)  
  89.75.Hc (Networks and genealogical trees)  
  89.70.Cf (Entropy and other measures of information)  
  89.70.Hj (Communication complexity)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61101117, 61171099, and 61362008), the National Key Scientific and Technological Project of China (Grant No. 2012ZX03004005002), the Fundamental Research Funds for the Central Universities, China (Grant No. BUPT2012RC0112), and the Natural Science Foundation of Jiangxi Province, China (Grant No. 20132BAB201018).
Corresponding Authors:  Lin Jia-Ru     E-mail:  jrlin@bupt.edu.cn
About author:  89.75.Fb; 89.75.Hc; 89.70.Cf; 89.70.Hj

Cite this article: 

Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒) Optimal network structure to induce the maximal small-world effect 2014 Chin. Phys. B 23 028902

[1] Watts D J and Strogatz S H 1998 Nature 393 440
[2] Chen X and Wang L 2008 Phys. Rev. E 77 017103
[3] Zheng Y H and Lu Q S 2008 Physica A387 3719
[4] Perc M 2007Phys. Rev. E 76 066203
[5] Roxin A, Riecke H and Solla S A 2004 Phys. Rev. Lett. 92 198101
[6] Wang Q, Duan Z, Perc M and Chen G 2008 Europhys. Lett. 83 50008
[7] Han J D J 2008 Cell Research 18 224
[8] Rubinov M and Sporns O 2010 NeuroImage 52 1059
[9] Bullmore Ed and Sporns O 2009 Nat. Rev. Neurosci. 10 186
[10] Kleinberg J 2008 Commun. ACM 51 66
[11] Stam, Jones B F, Nolte G, Breakspear M and Scheltens Ph 2007 Cerebral Cortex 17 92
[12] Liu Y, Liang M, Zhou Y, He Y, Hao Y, Song M, Yu C, Liu H, Liu Z and Jiang T 2008 Brain 131 945
[13] Wang L, Zhu C, He Y, Zang Y, Cao Q, Zhang H, Zhong Q and Wang Y 2009 Hum. Brain Mapp. 30 638
[14] Newman M E J and Watts D J 1999 Phys. Rev. E 60 7332
[15] Moore C and Newman M E J 2000 Phys. Rev. E 61 5678
[16] Barahona M and Pecora L M 2002 Phys. Rev. Lett. 89 054101
[17] Karsai M, Kivelä M, Pan R K, Kaski K, Kertész J, Barabási A L and Saramäki J 2011 Phys. Rev. E 83 025102
[18] Xu X and Wang Z H 2009 Nonlinear Dyn. 56 127
[19] Bao Z J, Cao Y J, Ding L J and Wang G Z 2009 Physica A 388 4491
[20] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[21] Newman M E J and Watts D J 1999 Phys. Lett. A 263 341
[22] Newman M E J, Moore C and Watts D J 2000 Phys. Rev. Lett. 84 3201
[23] Rozenfeld H D, Song C and Makse H A 2010 Phys. Rev. Lett. 104 025701
[24] Li W, Xu X P and Liu F 2006 Chin. Phys. Lett. 23 750
[25] Dang Y Z, Liu J G and Wang Z T 2006 Chin. Phys. Lett. 23 746
[26] Han F, Lu Q S, Wiercigroch M and Ji Q B 2009 Chin. Phys. B 18 482
[27] Wang X H, Jiao L C and Wu J S 2010 Chin. Phys. B 19 020501
[28] Shi X M, Shi L and Zhang J F 2010 Chin. Phys. B 19 038701
[29] Du W B, Cao X B, Yang H X and Hu M B 2010 Chin. Phys. B 19 010204
[30] Huang W, Jiang R, Hu M B and Wu Q S 2009 Chin. Phys. B 18 1306
[31] Tang S X, Chen L and He Y G 2011 Chin. Phys. B 20 110502
[32] Latora V and Marchiori M 2001 Phys. Rev. Lett. 87 198701
[33] Latora V and Marchiori M 2003 Eur. Phys. J. B 32 249
[34] Lago-Fernández L F, Huerta R, Corbacho F and Sigüenza J A 2002 Phys. Rev. Lett. 84 2758
[35] Achard S and Bullmore E 2007 PLoS Comput. Boil. 3 0174
[36] Latora V and Marchiori M 2002 Physica A 314 109
[37] Barrat A and Weigt M 2000 Eur. Phys. J. B 13 547
[38] Lago-Fernández L F, Huerta R, Corbacho F and Sigüenza J A 2000 Phys. Rev. Lett. 84 2758
[39] Thiemann C, Theis F, Grady D, Brune R and Brockmann D 2010 PloS one 5 e15422
[40] Liu R R, Wang W X, Lai Y C, Chen G and Wang B H 2011 Phys. Lett. A 375 363
[1] Pyramid scheme model for consumption rebate frauds
Yong Shi(石勇), Bo Li(李博), Wen Long(龙文). Chin. Phys. B, 2019, 28(7): 078901.
[2] Stochastic resonance and synchronization behaviors of excitatory-inhibitory small-world network subjected to electromagnetic induction
Xiao-Han Zhang(张晓函), Shen-Quan Liu(刘深泉). Chin. Phys. B, 2018, 27(4): 040501.
[3] Scaling of weighted spectral distribution in weighted small-world networks
Bo Jiao(焦波), Xiao-Qun Wu(吴晓群). Chin. Phys. B, 2017, 26(2): 028901.
[4] Stability of weighted spectral distribution in a pseudo tree-like network model
Bo Jiao(焦波), Yuan-ping Nie(聂原平), Cheng-dong Huang(黄赪东), Jing Du(杜静), Rong-hua Guo(郭荣华), Fei Huang(黄飞), Jian-mai Shi(石建迈). Chin. Phys. B, 2016, 25(5): 058901.
[5] An effective method to improve the robustness of small-world networks under attack
Zhang Zheng-Zhen (张争珍), Xu Wen-Jun (许文俊), Zeng Shang-You (曾上游), Lin Jia-Ru (林家儒). Chin. Phys. B, 2014, 23(8): 088902.
[6] Effects of node buffer and capacity on network traffic
Ling Xiang (凌翔), Hu Mao-Bin (胡茂彬), Ding Jian-Xun (丁建勋). Chin. Phys. B, 2012, 21(9): 098902.
[7] An evolving network model with modular growth
Zou Zhi-Yun(邹志云), Liu Peng(刘鹏), Lei Li(雷立), and Gao Jian-Zhi(高健智) . Chin. Phys. B, 2012, 21(2): 028904.
[8] Bifurcations and chaos control in discrete small-world networks
Li Ning(李宁), Sun Hai-Yi(孙海义), and Zhang Qing-Ling(张庆灵) . Chin. Phys. B, 2012, 21(1): 010503.
[9] Dynamics of organizational rumor communication on connecting multi-small-world networks
Xing Qi-Bin(邢琦彬), Zhang Yuan-Biao(张元标), Liang Zhi-Ning(梁志宁), and Zhang Fan(张帆) . Chin. Phys. B, 2011, 20(12): 120204.
[10] Evolutionary snowdrift game on heterogeneous Newman--Watts small-world network
Yang Han-Xin(杨涵新), Gao Kun(高坤), Han Xiao-Pu(韩筱璞), and Wang Bing-Hong(汪秉宏). Chin. Phys. B, 2008, 17(8): 2759-2763.
[11] Controlling bifurcations and chaos in discrete small-world networks
Liu Feng(刘峰), Guan Zhi-Hong(关治洪), and Wang Hua(王华) . Chin. Phys. B, 2008, 17(7): 2405-2411.
[12] The classification and analysis of dynamic networks
Guo Jin-Li(郭进利). Chin. Phys. B, 2007, 16(5): 1239-1245.
[13] Frequency sensitivity of sub-excitable systems coupled with different topology
Li Si-Hao (李思昊), Wang Hong-Li (王宏利), Ouyang Qi (欧阳颀). Chin. Phys. B, 2004, 13(4): 448-453.
No Suggested Reading articles found!