ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS |
Prev
Next
|
|
|
Extraordinary terahertz transmission through subwavelength spindle-like apertures in NbN film |
Zheng Xiao-Rui (郑小睿)a, Cheng Fei (程飞)a, Wu Jing-Bo (吴敬波)b, Jin Biao-Bing (金飚兵)b, Zhu Bei-Yi (朱北沂)a |
a National Laboratory for Superconductivity, Institute of Physics and Beijing National Laboratory for Condensed Matter Physics, Chinese Academy of Sciences, Beijing 100190, China;
b Research Institute of Superconductor Electronics (RISE), School of Electronic Science and Engineering, Nanjing University, Nanjing 210093, China |
|
|
Abstract We studied numerically the temperature dependent extraordinary terahertz transmission through niobium nitride (NbN) film perforated with subwavelength spindle-like apertures. Both the resonant frequency and intensity of extraordinary terahertz transmission peaks can be greatly modified by the transition of NbN film from the normal state to the superconducting state. An enhancement of the (±1,0) NbN/magnesium oxide (MgO) peak intensity as high as 200% is demonstrated due to the combined contribution of both the superconducting transition and the excitation of localized surface plasmons (LSPs) around the apertures. The extraordinary terahertz transmission through spindle-like hole arrays patterned on the NbN film can pave the way for us to explore novel active tuning devices.
|
Received: 10 May 2013
Revised: 10 July 2013
Accepted manuscript online:
|
PACS:
|
41.20.Jb
|
(Electromagnetic wave propagation; radiowave propagation)
|
|
73.20.Mf
|
(Collective excitations (including excitons, polarons, plasmons and other charge-density excitations))
|
|
Fund: Project supported by the National Basic Research Program of China (Grant Nos. 2011CBA00110 and 2011CBA00107) and the National Natural Science Foundation of China. |
Corresponding Authors:
Zheng Xiao-Rui
E-mail: zhengxiaorui1986@hotmail.com
|
Cite this article:
Zheng Xiao-Rui (郑小睿), Cheng Fei (程飞), Wu Jing-Bo (吴敬波), Jin Biao-Bing (金飚兵), Zhu Bei-Yi (朱北沂) Extraordinary terahertz transmission through subwavelength spindle-like apertures in NbN film 2014 Chin. Phys. B 23 014101
|
[1] |
Ebbesen T W, Lezec H J, Ghaemi H F, Thio T and Wolff P A 1998 Nature 391 667
|
[2] |
Barnes W L, Dereux A and Ebbesen T W 2003 Nature 424 824
|
[3] |
Genet C and Ebbesen T W 2007 Nature 445 39
|
[4] |
Gordon R, Hughes M, Leathem B, Kavanagh K L and Brolo A G 2005 Nano Lett. 5 1243
|
[5] |
Cheng F, Liu H F, Li B H, Han J, Xiao H, Han X F, Gu C Z and Qiu X G 2012 Appl. Phys. Lett. 100 131110
|
[6] |
Ghaemi H F, Thio T, Grupp D E, Ebbesen T W and Lezec H J 1998 Phys. Rev. B 58 6779
|
[7] |
Garcia-Vidal F J, Martin-Moreno L, Ebbesen T W and Kuipers L 2010 Rev. Mod. Phys. 82 729
|
[8] |
Grupp D E, Lezec H J, Ebbesen T W, Pellerin K M and Thio T 2000 Appl. Phys. Lett. 77 1569
|
[9] |
Rodrigo S G, Garcia-Vidal F J and Martin-Moreno L 2008 Phys. Rev. B 77 075401
|
[10] |
Cheng F, Li B H, Han J, Xiao H, Gu C Z and Qiu X G 2013 Appl. Phys. Lett. 102 151113
|
[11] |
Wu J B, Dai H, Wang H, Jin B B, Jia T, Zhang C H, Cao C H, Chen J, Kang L, Xu W W and Wu P H 2011 Opt. Express 19 1101
|
[12] |
Fang X, Zhuang C G, Wen Z C, Han X F, Feng Q R, Xi X X, Nori F, Xie X C, Niu Q and Qiu X G 2011 Phys. Rev. B 84 205438
|
[13] |
Tian Z, Singh R, Han J G, Gu J Q, Xing Q R, Wu J and Zhang W L 2010 Opt. Lett. 35 3586
|
[14] |
Tsiatmas A, Buckingham A R, Fedotov V A, Wang S, Chen Y, de Groot P A J and Zheludev N I 2010 Appl. Phys. Lett. 97 111106
|
[15] |
Klein Koerkamp K J, Enoch S, Segerink F B, van Hulst N F and Kuipers L 2004 Phys. Rev. Lett. 92 183901
|
[16] |
Fan W J, Zhang S, Malloy K J and Brueck S R J 2005 Opt. Express 13 4406
|
[17] |
Lu X C, Han J G and Zhang W L 2008 Appl. Phys. Lett. 92 121103
|
[18] |
Zhang W L 2008 Eur. Phys. J. Appl. Phys. 43 1
|
[19] |
Azad A K and Zhang W L 2005 Opt. Lett. 30 2945
|
[20] |
Beruete M, Sorolla M, Campillo I and Dolado J S 2005 IEEE Microwave Wireless Compon. Lett. 15 116
|
[21] |
Kato E, Suizu K and Kawase K 2009 Appl. Phys. Express 2 122302
|
[22] |
Wang L, Uppuluri S M, Jin E X and Xu X F 2006 Nano Lett. 6 361
|
[23] |
Kinzel E C and Xu X 2010 Opt. Lett. 35 992
|
[24] |
Wang L and Xu X F 2007 Appl. Phys. Lett. 90 261105
|
[25] |
Yang Y P, Singh R and Zhang W L 2011 Opt. Lett. 36 2901
|
[26] |
Degiron A, Lezec H J, Yamamoto N and Ebbesen T W 2004 Opt. Commun. 239 61
|
[27] |
Kang L, Jin B B, Liu X Y, Jia X Q, Chen J, Ji Z M, Xu W W, Wu P H, Mi S B, Pimenov A, Wu Y J and Wang B G 2011 J. Appl. Phys. 109 033908
|
[28] |
Zhang C H, Wu J B, Jin B B, Ji Z M, Kang L, Xu W W, Chen J, Tonouchi M and Wu P H 2012 Opt. Express 20 42
|
[29] |
Wu J B, Jin B B, Xue Y H, Zhang C H, Dai H, Zhang L B, Cao C H, Kang L, Xu W W, Chen J and Wu P H 2011 Opt. Express 19 12021
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|