|
|
Electrostatic surface trap for cold polar molecules on a chip |
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平) |
State Key Laboratory of Precision Spectroscopy, Department of Physics, East China Normal University, Shanghai 200062, China |
|
|
Abstract We propose a simple scheme for trapping cold polar molecules in low-field seeking states on the surface of a chip by using a grounded metal plate and two finite-length charged wires that half embanked in an insulating substrate, calculate the electric field distributions generated by our charged-wire layout in free space and the corresponding Stark potentials for ND3 molecules, and analyze the dependence of the trapping center position on the geometric parameters. Moreover, the loading and trapping processes of cold ND3 molecules are studied by using the Monte Carlo method. Our study shows that the loading efficiency of the trap scheme can reach 11.5%, and the corresponding temperature of the trapped cold molecules is about 26.4 mK.
|
Received: 18 March 2013
Revised: 05 June 2013
Accepted manuscript online:
|
PACS:
|
37.10.Pq
|
(Trapping of molecules)
|
|
37.10.Mn
|
(Slowing and cooling of molecules)
|
|
37.10.Vz
|
(Mechanical effects of light on atoms, molecules, and ions)
|
|
37.20.+j
|
(Atomic and molecular beam sources and techniques)
|
|
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 10674047, 10804031, 10904037, 10974055, 11034002, and 11274114), the National Basic Research Program of China (Grant Nos. 2006CB921604 and 2011CB921602), the Basic Key Program of Shanghai Municipality of China (Grant No. 07JC14017), and the Leading Academic Discipline Project of Shanghai Municipality of China (Grant No. B408). |
Corresponding Authors:
Yin Jian-Ping
E-mail: jpyin@phy.ecnu.edu.cn
|
Cite this article:
Wang Qin (王琴), Li Sheng-Qiang (李胜强), Hou Shun-Yong (侯顺永), Xia Yong (夏勇), Wang Hai-Ling (汪海玲), Yin Jian-Ping (印建平) Electrostatic surface trap for cold polar molecules on a chip 2014 Chin. Phys. B 23 013701
|
[1] |
Thorpe M J, Moll K D, Jones R J, Safdi B and Ye J 2006 Science 311 1595
|
[2] |
Hudson J J, Sauer B E, Tarbutt M R and Hinds E A 2002 Phys. Rev. Lett. 89 023003
|
[3] |
Singh V, Hardman K S, Tariq N, Lu M J, Ellis A, Morrison M J and Weinstein J D 2012 Phys. Rev. Lett. 108 203201
|
[4] |
Willitsch S, Bell M T, Gingell A D, Procter S R and Softley T P 2008 Phys. Rev. Lett. 100 043203
|
[5] |
Soderberg K A B, Gemelke N and Chin C 2009 New J. Phys. 11 055022
|
[6] |
Ni K K, Ospelkaus S, Wang D, Quéméner G, Neyenhuis B, deMiranda M H G, Bohn J L, Ye J and Jin D S 2010 Nature 464 1324
|
[7] |
Bethlem H L, Berden G and Meijer G 1999 Phys. Rev. Lett. 83 1558
|
[8] |
Weinstein J D, deCarvalho R, Guillet T, Friendrich B and Doyle J M 1998 Nature 395 148
|
[9] |
Rangwala S A, Junglen T, Rieger T, Pinkse P W H and Rempe G 2003 Phys. Rev. A 67 043406
|
[10] |
Wiederkehr A W, Schmutz H, Motsch M and Merkt F 2012 Mol. Phys. 110 1807
|
[11] |
Fulton R, Bishop A I, Scheneider M N and Barker P F 2006 Nat. Phys. 2 465
|
[12] |
Weinstein J D, de Carvalho R, Guillet T, Friedrich B and Doyle J M 1998 Nature 395 148
|
[13] |
Takekoshi T, Patterson B M and Knize R J 1998 Phys. Rev. Lett. 81 5105
|
[14] |
Bethlem H L, Berden G, Crompvoets F M H, Jongma R T, van Roij A J A and Meijer G 2000 Nature 406 491
|
[15] |
Crompvoets F M H, Bethlem H L, Jongma R T and Meijer G 2001 Nature 411 174
|
[16] |
van Veldhoven J, Bethlem H L and Meijer G 2005 Phys. Rev. Lett. 94 083001
|
[17] |
van de Meerakker S Y T, Smeets P H M, Vanhaecke N, Jongma R T and Meijer G 2005 Phys. Rev. Lett. 94 023004
|
[18] |
Sawyer B C, Lev B L, Hudson E R, Stuhl B K, Lara M, Bohn J L and Ye J 2007 Phys. Rev. Lett. 98 253002
|
[19] |
Kleinert J, Haimberger C, Zabawa P J and Bigelow N P 2007 Phys. Rev. Lett. 99 143002
|
[20] |
Hoekstra S, Metsälä M, Zieger P C, Scharfenberg L, Gilijamse J J, Meijer G and van de Meerakker S Y T 2007 Phys. Rev. A 76 063408
|
[21] |
Gilijamse J J, Hoekstra S, Meek S A, Metsälä M, van de Meerakker S Y T, Meijer G and Groenenboom G C 2007 J. Chem. Phys. 127 221102
|
[22] |
Xu X Y, Chen H B and Yin J P 2009 Acta Phys. Sin. 58 1563 (in Chinese)
|
[23] |
Xia Y, Yin Y L, Ji X and Yin J P 2012 Chin. Phys. Lett. 29 053701
|
[24] |
Meek S A, Bethlem H L, Conrad H and Meijer G 2008 Phys. Rev. Lett. 100 153003
|
[25] |
Meek S A, Conrad H and Meijer G 2009 Science 324 1699
|
[26] |
Hayt W H and Buck J A 2001Engineering Electromagnetics (6th edn.) (New York: McGraw-Hill)
|
[27] |
Bethlem H L, van Roij A J A, Jongma R R and Meijer G 2002 Phys. Rev. Lett. 88 133003
|
[28] |
Deng L Z, Xia Y and Yin J P 2007 Chin. Phys. 16 707
|
[29] |
Xia Y, Yin Y L, Chen H B, Deng L Z and Yin J P 2008 Phys. Rev. Lett. 100 043003
|
[30] |
Deng L Z, Liang Y, Gu Z X, Hou S Y, Li S Q, Xia Y and Yin J P 2011 Phys. Rev. Lett. 106 140401
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|