|
|
Analysis of vibrational spectra of nano-bio molecules:Application to metalloporphrins |
K Srinivasa Raoa, G Srinivasb, J. Vijayasekharc, V. U. M. Raod, Y. Srinivase, K. Sunil Babuf, V. Sunndadara Siva Kumarg, A. Hanumaiahh |
a Department of Electronics & Instrumentation Engineering, Lakireddy Bali Reddy College of Engineering, Vijayawada, India;
b Department of Physics, KL University, Vaddeswaram, Guntur, Andhra Pradesh, India;
c Research Scholar, Department of Mathematics, Jawaharlal Nehru Technological University Kakinada, India;
d Department of Applied Mathematics, College of Science & Technology, Andhra University, Visakhapatnam, India;
e Department of Computer Science, GITAM University, Hyderabad, India;
f Department of Physics, Miracle Engineering College, Bhogapuram, Andhra Pradesh, India;
g Department of Electronics & Instrumentation, Rajeev Gandhi Memorial Engineering College, Nandyal;
h Department of Physics, Lara’s Vignan Institute of Technology and Science, Vadlamudi, India |
|
|
Abstract In this paper, we have applied the Lie algebraic model to nano-bio molecules to determine the vibrational spectra of different stretching and bending vibrational modes. The determined vibrational energy levels by the Lie algebraic model are compared with the experimental data. The results from the theoretical model are consistent with the experimental data. The vibrational energy levels are clustering in the excited states.
|
Received: 13 December 2012
Revised: 27 February 2013
Accepted manuscript online:
|
PACS:
|
03.65.Fd
|
(Algebraic methods)
|
|
02.20.Sv
|
(Lie algebras of Lie groups)
|
|
33.20.Ea
|
(Infrared spectra)
|
|
Corresponding Authors:
K Srinivasa Rao
E-mail: srinivasakarmuri@gmail.com
|
Cite this article:
K Srinivasa Rao, G Srinivas, J. Vijayasekhar, V. U. M. Rao, Y. Srinivas, K. Sunil Babu, V. Sunndadara Siva Kumar, A. Hanumaiah Analysis of vibrational spectra of nano-bio molecules:Application to metalloporphrins 2013 Chin. Phys. B 22 090304
|
[1] |
Iachello F 1981 Chem. Phys. Lett. 78 581
|
[2] |
Iachello F and Levine R D 1982 J. Chem. Phys. 77 3046
|
[3] |
van Roosmalen O S, Dieperink A E L and Iachello F 1982 Chem. Phys. Lett. 85 32
|
[4] |
van Roosmalen O S, Iachello F, Levine R D and Dieperink A E L 1983 J. Chem. Phys. 79 2515
|
[5] |
Bowman J W, Wierzbicki A and Zuniga J 1988 Chem. Phys. Lett. 150 269
|
[6] |
Sarkar N K, Choudhury J and Bhattacharjee R 2006 Mol. Phys. 104 3051
|
[7] |
Sarkar N K, Choudhury J, Karumuri S R and Bhattacharjee R 2008 Mol. Phys. 106 693
|
[8] |
Choudhury J, Karumuri S R, Sarkar N K and Bhattacharjee R 2008 Pramana J. Phys. 71 439
|
[9] |
Choudhury J, Karumuri S R, Sarkar N K and Bhattacharjee R 2010 Pramana J. Phys 84 555
|
[10] |
Choudhury J, Karumuri S R, Sarkar N K and Bhattacharjee R 2009 Chin. Phys. Lett. 26 020308
|
[11] |
Choudhury J, Gaurab Roy S, Sarkar N K and Bhattacharjee R 2012 Chin. J. Phys. 50 450
|
[12] |
Karumuri S R, Sarkar N K, Choudhury J and Bhattacharjee R 2008 Mol. Phys. 106 1733
|
[13] |
Karumuri S R, Sarkar N K, Choudhury J and Bhattacharjee R 2009 Chin. Phys. Lett. 26 093301
|
[14] |
Karumuri S R, Sarkar N K, Choudhury J and Bhattacharjee R 2009J. Mol. Spectrosc. 255 183
|
[15] |
Karumuri S R, Sarkar N K, Choudhury J and Bhattacharjee 2010 Indian J. Phys. 84 647
|
[16] |
Karumuri S R 2012 Indian J. Phys. 86 1147
|
[17] |
Iachello F and Oss S 1990 J. Mol. Spectrosc. 142 85
|
[18] |
Iachello F, Oss S and Lemus R 1991 J. Mol. Spectrosc. 146 56
|
[19] |
Iachello F, Oss S and Lemus R 1991 J. Mol. Spectrosc. 149 132
|
[20] |
Wang M S, Ding S L, Feng D T and Liu H Y 2002 Phys. Rev. A 66 022506
|
[21] |
van Roosmalen O S, Levine R D and Dieperink A E L 1983 Chem. Phys. Lett. 101 512
|
[22] |
Benjamin I, van Roosmalen O S and Levine R D 1984 J. Chem. Phys. 81 3352
|
[23] |
van Roosmalen O S, Benjamin I and Levine R D 1984 J. Chem. Phys. 81 5986
|
[24] |
Iachello F and Oss S 1991 Phys. Rev. Lett. 66 2976
|
[25] |
Iachello F and Oss S 1991 Chem. Phys. Lett. 187 500
|
[26] |
Alhassid Y, Gursey F and Iachello F 1983 Annl. Phys. 148 346
|
[27] |
Alhassid Y, Gursey F and Iachello F 1983 Chem. Phys. Lett. 99 27
|
[28] |
Levine R D 1983 Chem. Phys. Lett. 95 87
|
[29] |
Child M S and Halonen L O 1984 Adv. Chem. Phys. 57 1
|
[30] |
Wood B R, Caspers P and Pupples G J 2007 Anal. Bioanal Chem. 387 1691
|
[31] |
Phuber K and Herzberg G 1979 Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (New York: Van Nostrand Reinhold Co.)
|
[32] |
Halonen L and Child M S 1983 J. Chem. Phys. 79 559
|
[33] |
Li X Y, Czernuszewicz R S, Kincaid J R, Stein P and Spiro T G 1990 J. Phys. Chem. 94 47
|
[34] |
Kitagawa T, Abe M and Ogoshi H 1978 J. Chem. Phys. 69 4516
|
[35] |
Czernuszewicz R S, Macor K A, Li X Y, Kincaid J R and Spiro T G 1989 J. Am. Chem. Soc. 111 3860
|
No Suggested Reading articles found! |
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
Altmetric
|
blogs
Facebook pages
Wikipedia page
Google+ users
|
Online attention
Altmetric calculates a score based on the online attention an article receives. Each coloured thread in the circle represents a different type of online attention. The number in the centre is the Altmetric score. Social media and mainstream news media are the main sources that calculate the score. Reference managers such as Mendeley are also tracked but do not contribute to the score. Older articles often score higher because they have had more time to get noticed. To account for this, Altmetric has included the context data for other articles of a similar age.
View more on Altmetrics
|
|
|