Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 087804    DOI: 10.1088/1674-1056/22/8/087804
CONDENSED MATTER: ELECTRONIC STRUCTURE, ELECTRICAL, MAGNETIC, AND OPTICAL PROPERTIES Prev   Next  

Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process

Xin Mei (新梅)a, Hu Li-Zhong (胡礼中)b
a School of Physics and Materials Engineering, Dalian Nationalities University, Dalian 116600, China;
b School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  ZnS:Cu, Eu nanocrystals with an average diameter of ~ 80 nm are synthesized using a hydrothermal approach at 200 ℃. The photoluminescence (PL) properties of the ZnS:Cu, Eu nanocrystals before and after annealing, as well as the doping form of Eu, are studied. The as-synthesized samples are characterized by X-ray diffraction, scanning electron microscopy, inductively coupled plasma-atomic emission spectrometry, and the excitation and emission spectra (PL). The results show that both Cu and Eu are indeed incorporated into the ZnS matrix. Compared with the PL spectrum of the Cu mono-doped sample, the PL emission intensity of the Cu and Eu-codoped sample increases and a peak appears at 516 nm, indicating that Eu3+ ions, which act as an impurity compensator and activator, are incorporated into the ZnS matrix, forming a donor level. Compared with the unannealed sample, the annealed one has an increased PL emission intensity and the peak position has a blue shift of 56 nm from 516 nm to 460 nm, which means that Eu3+ ions reduce to Eu2+ ions, thereby leading to the appearance of Eu2+ characteristic emission and generating effective host-to-Eu2+ energy transfer. The results indicate the potential applications of ZnS:Cu, Eu nanoparticles in optoelectronic devices.
Keywords:  ZnS:Cu      Eu      nanocrystals      hydrothermal treatment      PL spectra  
Received:  24 October 2012      Revised:  12 January 2013      Accepted manuscript online: 
PACS:  78.55.Et (II-VI semiconductors)  
  78.56.Cd (Photocarrier radiometry)  
  78.67.Bf (Nanocrystals, nanoparticles, and nanoclusters)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 10374011) and the Doctoral Fund of Dalian Nationalities University, China (Grant No. 20116201).
Corresponding Authors:  Hu Li-Zhong     E-mail:  lizhongh@dlut.edu.cn

Cite this article: 

Xin Mei (新梅), Hu Li-Zhong (胡礼中) Luminescence properties of ZnS:Cu, Eu semiconductor nanocrystals synthesized by a hydrothermal process 2013 Chin. Phys. B 22 087804

[1] Manzoor K, Vadera S R, Kumar N and Kutty T R N 2003 Mater. Chem. Phys. 82 718
[2] Qi L, Lee B I, Kim J M, Jang J E and Choe J Y 2003 J. Lumin. 104 261
[3] Yang P, Lü M K, Xu D, Yuan D R, Song C F, Liu S W and Cheng X F 2003 Opt. Mater 24 497
[4] Li D F, Li B L, Xiao H Y and Dong H N 2011 Chin. Phys. B 20 067101
[5] Liu Y F and Yu J S 2010 J. Coll. Interf. Sci. 351 1
[6] Bruchez M Jr, Moronne M and Gin P, Weiss S and Alivisatos A P 1998 Science 281 2013
[7] Kar S and Biswas S 2008 J. Phys. Chem. C 112 11144
[8] Park J H, Lee S H, Kim J S, Kwon A K, Park H L and Han S D 2007 J. Lumin. 126 566
[9] Sun Q, Subramanyam G, Dai L, Check M, Campbell A, Naik R, Grote J and Wong Y 2009 ACS Nano 3 737
[10] Kamat P V 2008 J. Phys. Chem. C 112 18737
[11] Yu X L, Song J G, Fu Y S, Xie Y, Song X, Sun J and Du X W 2010 J. Phys. Chem. C 114 2380
[12] Wang W D, Huang F Q, Xia Y J and Wang A B 2008 J. Lumin.128 610
[13] Quan Z W, Yang D M, Li C X, Kong D Y, Yang P P, Cheng Z Y and Lin J 2009 Langmuir 25 10259
[14] Yang W Q, Dai L, You L P and Qin G G 2008 Phys. Lett. A 372 4831
[15] Thiyagarajan P, Kottaisamy M and Ramachandra Rao M S 2009 J. Lumin. 129 991
[16] Torimoto T, Adachi T, Okazaki K, Sakuraoka M, Shibayama T, Ohtani B, Kudo A and Kuwabata S 2007 J. Am. Chem. Soc. 129 12388
[17] Xin M, Cao W H and Luo X X 2010 Spectroscopy and Spectral Analysis 30 2451
[18] Bol A A, Ferwerda J, Bergwerff J A and Meijerink A 2002 J. Lumin. 99 325
[19] Manam J, Chatterjee V, Das S, Choubey A and Sharma S K 2010 J. Lumin. 130 292
[20] Lee S Y, Shin Y H, KimY, Kim S and Ju S 2011 J. Lumin. 131 1336
[21] Wang L P, Xu X D and Yuan X 2010 J. Lumin. 130 137
[22] Hu H and Zhang W H 2006 Opt. Mater. 28 536
[23] Ageeth A B, van Rick B and Andries M 2002 Chem. Mater. 14 1121
[24] Tang T P, Yang M R and Chen K S 2000 Ceram. Int. 26 153
[25] Xie H Q, Chen Y, Huang W Q, Huang G F, Peng P, Peng L, Wang T H and Zeng Y 2011 Chin. Phys. Lett. 28 027806
[26] Huang Q S, Dong D Q, Xu J P, Zhang X S, Zhang H M and Li L 2010 Chin. Phys. Lett. 27 057306
[27] Lü Y M, Shen D Z, Liu Y C, Li B H, Zhang J Y, Fan X W, Iida S and Kato A 2002 Chin. Phys. Lett. 19 131
[28] Luo X X, Cao W H and Zhou L X 2007 J. Lumin. 122-123 812
[29] Min X B, Yuan C Y, Chai L Y, Liang Y J, Zhang H J, Xie X D and Ke Y 2013 Miner. Eng. 40 16
[30] Hoa T T Q, The N D, Mcvitie S, Nam N H, Vu L V, Canh T D and Long N N 2011 Opt. Mater. 33 308
[31] Hosoba M, Oshita K, Katarina R K, Takayanagi T, Oshima M and Motomizu S 2009 Anal. Chim. Acta 639 51
[32] Zhang X B, Song H W, Yu L X, Wang T, Ren X G, Kong X G, Xie Y H and Wang X J 2006 J. Lumin. 118 251
[33] Xin M and Cao W H 2010 Acta Phys. Sin. 59 5833 (in Chinese)
[34] Sun J Y, Shi C S and Li Y M 1989 J. Chin. Rare Earth. Soc. 7 41
[1] Meshfree-based physics-informed neural networks for the unsteady Oseen equations
Keyi Peng(彭珂依), Jing Yue(岳靖), Wen Zhang(张文), and Jian Li(李剑). Chin. Phys. B, 2023, 32(4): 040208.
[2] Diffraction deep neural network based orbital angular momentum mode recognition scheme in oceanic turbulence
Hai-Chao Zhan(詹海潮), Bing Chen(陈兵), Yi-Xiang Peng(彭怡翔), Le Wang(王乐), Wen-Nai Wang(王文鼐), and Sheng-Mei Zhao(赵生妹). Chin. Phys. B, 2023, 32(4): 044208.
[3] Diffusive field coupling-induced synchronization between neural circuits under energy balance
Ya Wang(王亚), Guoping Sun(孙国平), and Guodong Ren(任国栋). Chin. Phys. B, 2023, 32(4): 040504.
[4] Atomistic insights into early stage corrosion of bcc Fe surfaces in oxygen dissolved liquid lead-bismuth eutectic (LBE-O)
Ting Zhou(周婷), Xing Gao(高星), Zhiwei Ma(马志伟), Hailong Chang(常海龙), Tielong Shen(申铁龙), Minghuan Cui(崔明焕), and Zhiguang Wang(王志光). Chin. Phys. B, 2023, 32(3): 036801.
[5] Inverse stochastic resonance in modular neural network with synaptic plasticity
Yong-Tao Yu(于永涛) and Xiao-Li Yang(杨晓丽). Chin. Phys. B, 2023, 32(3): 030201.
[6] Hopf bifurcation and phase synchronization in memristor-coupled Hindmarsh-Rose and FitzHugh-Nagumo neurons with two time delays
Zhan-Hong Guo(郭展宏), Zhi-Jun Li(李志军), Meng-Jiao Wang(王梦蛟), and Ming-Lin Ma(马铭磷). Chin. Phys. B, 2023, 32(3): 038701.
[7] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[8] Direct measurement of an energy-dependent single-event-upset cross-section with time-of-flight method at CSNS
Biao Pei(裴标), Zhixin Tan(谭志新), Yongning He(贺永宁), Xiaolong Zhao(赵小龙), and Ruirui Fan(樊瑞睿). Chin. Phys. B, 2023, 32(2): 020705.
[9] Epilepsy dynamics of an astrocyte-neuron model with ammonia intoxication
Zhixuan Yuan(袁治轩), Mengmeng Du(独盟盟), Yangyang Yu(于羊羊), and Ying Wu(吴莹). Chin. Phys. B, 2023, 32(2): 020502.
[10] Thermally enhanced photoluminescence and temperature sensing properties of Sc2W3O12:Eu3+ phosphors
Yu-De Niu(牛毓德), Yu-Zhen Wang(汪玉珍), Kai-Ming Zhu(朱凯明), Wang-Gui Ye(叶王贵), Zhe Feng(冯喆), Hui Liu(柳挥), Xin Yi(易鑫), Yi-Huan Wang(王怡欢), and Xuan-Yi Yuan(袁轩一). Chin. Phys. B, 2023, 32(2): 028703.
[11] Inhibitory effect induced by fractional Gaussian noise in neuronal system
Zhi-Kun Li(李智坤) and Dong-Xi Li(李东喜). Chin. Phys. B, 2023, 32(1): 010203.
[12] Formation of quaternary all-d-metal Heusler alloy by Co doping fcc type Ni2MnV and mechanical grinding induced B2-fcc transformation
Lu Peng(彭璐), Qiangqiang Zhang(张强强), Na Wang(王娜), Zhonghao Xia(夏中昊), Yajiu Zhang(张亚九),Zhigang Wu(吴志刚), Enke Liu(刘恩克), and Zhuhong Liu(柳祝红). Chin. Phys. B, 2023, 32(1): 017102.
[13] Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
Huaqing Liu(刘华清), Rui Jiang(姜锐), Junfang Tian(田钧方), and Kaixuan Zhu(朱凯旋). Chin. Phys. B, 2023, 32(1): 014501.
[14] High-performance artificial neurons based on Ag/MXene/GST/Pt threshold switching memristors
Xiao-Juan Lian(连晓娟), Jin-Ke Fu(付金科), Zhi-Xuan Gao(高志瑄),Shi-Pu Gu(顾世浦), and Lei Wang(王磊). Chin. Phys. B, 2023, 32(1): 017304.
[15] Firing activities in a fractional-order Hindmarsh-Rose neuron with multistable memristor as autapse
Zhi-Jun Li(李志军), Wen-Qiang Xie(谢文强), Jin-Fang Zeng(曾金芳), and Yi-Cheng Zeng(曾以成). Chin. Phys. B, 2023, 32(1): 010503.
No Suggested Reading articles found!