Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(8): 080203    DOI: 10.1088/1674-1056/22/8/080203
GENERAL Prev   Next  

A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems

Wang Qi-Fang (王启防)a, Dai Bao-Dong (戴保东)a, Li Zhen-Feng (栗振锋)b
a Department of Engineering Mechanics, Taiyuan University of Science & Technology, Taiyuan 030024, China;
b College of Transportation & Logistics, Taiyuan University of Science & Technology, Taiyuan 030024, China
Abstract  On the basis of the complex variable moving least-square (CVMLS) approximation, a complex variable meshless local Petrov-Galerkin (CVMLPG) method is presented for transient heat conduction problems. The method is developed based on the CVMLS approximation for constructing shape functions at scattered points, and the Heaviside step function is used as a test function in each sub-domain to avoid the need for a domain integral in symmetric weak form. In the construction of the well-performed shape function, the trial function of a two-dimensional (2D) problem is formed with a one-dimensional (1D) basis function, thus improving computational efficiency. The numerical results are compared with the exact solutions of the problems and the finite element method (FEM). This comparison illustrates the accuracy as well as the capability of the CVMLPG method.
Keywords:  meshless method      complex variable moving least-square method      complex variable meshless local Petrov-Galerkin method      transient heat conduction problems  
Received:  28 January 2013      Revised:  28 March 2013      Accepted manuscript online: 
PACS:  02.60.Cb (Numerical simulation; solution of equations)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
  44.10.+i (Heat conduction)  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 51078250), the Research Project by Shanxi Scholarship Council of Shanxi Province, China (Grant No. 2013-096), and the Scientific & Technological Innovation Program for Postgraduates of Taiyuan University of Science and Technology, China (Grant No. 20125026).
Corresponding Authors:  Dai Bao-Dong     E-mail:  Dai_baodong@126.com

Cite this article: 

Wang Qi-Fang (王启防), Dai Bao-Dong (戴保东), Li Zhen-Feng (栗振锋) A complex variable meshless local Petrov-Galerkin method for transient heat conduction problems 2013 Chin. Phys. B 22 080203

[1] Zhang X, Liu Y and Ma S 2009 Adv. Mech. 39 1
[2] Atluri S N and Zhu T L 1998 Comput. Mech. 22 117
[3] Ching H K and Batra R C 2001 Comput. Model. Eng. Sci. 2 273
[4] Long S Y and Atluri S N 2002 Comput. Model. Eng. Sci. 3 53
[5] Han Z D, Rajendran A M and Atluri S N 2005 Comput. Model. Eng. Sci. 10 1
[6] Wu X H and Tao W Q 2008 Int. J. Heat Mass Transfer 51 3103
[7] Lin H and Atluri S N 2001 Comput. Model. Eng. Sci. 2 117
[8] Liew K M, Feng C, Cheng Y and Kitipornchai S 2007 Int. J. Numer. Meth. Eng. 70 46
[9] Cheng Y M, Peng M J and Li J H 2005 Chin. J. Theor. Appl. Mech. 37 1
[10] Peng M J, Liu P and Cheng Y M 2009 Int. J. Appl. Mech. 1 367
[11] Bai F N, Li D M, Wang J F and Cheng Y M 2012 Chin. Phys. B 21 020204
[12] Peng M J, Li D M and Cheng Y M 2011 Engin. Struct. 33 127
[13] Li D M, Bai F N, Cheng Y M and Liew K M 2012 Comp. Meth. Appl. Mech. Eng. 233-236 1
[14] Cheng Y M, Li R X and Peng M J 2012 Chin. Phys. B 21 090205
[15] Wang J F and Cheng Y M 2012 Chin. Phys. B 21 120206
[16] Cheng Y M, Wang J F and Li R X 2012 Int. J. Appl. Mech. 4 1250042
[17] Cheng Y M, Wang J F and Bai F N 2012 Chin. Phys. B 21 090203
[18] Wang J F and Cheng Y M 2013 Chin. Phys. B 22 030208
[19] Liew K M and Cheng Y M 2009 Comp. Meth. Appl. Mech. Eng. 198 3925
[20] Yang X L, Dai B D and Li Z F 2012 Acta Phys. Sin. 61 050204 (in Chinese)
[21] Yang X L, Dai B D and Zhang W W 2012 Chin. Phys. B 21 100208
[22] Gao H F and Cheng Y M 2009 Chin. J. Theor. Appl. Mech. 41 480
[23] Gao H F and Cheng Y M 2010 Int. J. Comput. Meth. 7 55
[24] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 1 (in Chinese)
[25] Chen L and Cheng Y M 2008 Acta Phys. Sin. 57 6047 (in Chinese)
[26] Chen L and Cheng Y M 2010 Chin. Phys. B 19 090204
[27] Chen L and Cheng Y M 2010 Sci. China G: Phys. Mech. Astron. 40 242
[28] Li Q H, Chen S S and Kou G X 2011 J. Comput. Phys. 230 2739
[1] Improved reproducing kernel particle method for piezoelectric materials
Ji-Chao Ma(马吉超), Gao-Feng Wei(魏高峰), Dan-Dan Liu(刘丹丹). Chin. Phys. B, 2018, 27(1): 010201.
[2] Topology optimization using the improved element-free Galerkin method for elasticity
Yi Wu(吴意), Yong-Qi Ma(马永其), Wei Feng(冯伟), Yu-Min Cheng(程玉民). Chin. Phys. B, 2017, 26(8): 080203.
[3] Meshless analysis of an improved element-free Galerkin method for linear and nonlinear elliptic problems
Yao-Zong Tang(唐耀宗), Xiao-Lin Li(李小林). Chin. Phys. B, 2017, 26(3): 030203.
[4] Two-dimensional fracture analysis of piezoelectric material based on the scaled boundary node method
Shen-Shen Chen(陈莘莘), Juan Wang(王娟), Qing-Hua Li(李庆华). Chin. Phys. B, 2016, 25(4): 040203.
[5] Solving unsteady Schrödinger equation using the improved element-free Galerkin method
Rong-Jun Cheng(程荣军) and Yu-Min Cheng(程玉民). Chin. Phys. B, 2016, 25(2): 020203.
[6] Hybrid natural element method for large deformation elastoplasticity problems
Ma Yong-Qi (马永其), Zhou Yan-Kai (周延凯). Chin. Phys. B, 2015, 24(3): 030204.
[7] Analysis of elastoplasticity problems using an improved complex variable element-free Galerkin method
Cheng Yu-Min (程玉民), Liu Chao (刘超), Bai Fu-Nong (白福浓), Peng Miao-Juan (彭妙娟). Chin. Phys. B, 2015, 24(10): 100202.
[8] Hybrid natural element method for viscoelasticity problems
Zhou Yan-Kai (周延凯), Ma Yong-Qi (马永其), Dong Yi (董轶), Feng Wei (冯伟). Chin. Phys. B, 2015, 24(1): 010204.
[9] A meshless algorithm with moving least square approximations for elliptic Signorini problems
Wang Yan-Chong (王延冲), Li Xiao-Lin (李小林). Chin. Phys. B, 2014, 23(9): 090202.
[10] A meshless method based on moving Kriging interpolation for a two-dimensional time-fractional diffusion equation
Ge Hong-Xia (葛红霞), Cheng Rong-Jun (程荣军). Chin. Phys. B, 2014, 23(4): 040203.
[11] Analysis of variable coefficient advection–diffusion problems via complex variable reproducing kernel particle method
Weng Yun-Jie (翁云杰), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(9): 090204.
[12] A meshless Galerkin method with moving least square approximations for infinite elastic solids
Li Xiao-Lin (李小林), Li Shu-Ling (李淑玲). Chin. Phys. B, 2013, 22(8): 080204.
[13] Analysis of the generalized Camassa and Holm equation with the improved element-free Galerkin method
Cheng Rong-Jun, Wei Qi. Chin. Phys. B, 2013, 22(6): 060209.
[14] An element-free Galerkin (EFG) method for generalized Fisher equations (GFE)
Shi Ting-Yu (时婷玉), Cheng Rong-Jun (程荣军), Ge Hong-Xia (葛红霞). Chin. Phys. B, 2013, 22(6): 060210.
[15] A new complex variable meshless method for advection–diffusion problems
Wang Jian-Fei (王健菲), Cheng Yu-Min (程玉民). Chin. Phys. B, 2013, 22(3): 030208.
No Suggested Reading articles found!