Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(7): 073202    DOI: 10.1088/1674-1056/22/7/073202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

Intercombination transitions of the carbon-like isoelectronic sequence

Liu Hao (刘浩)a b, Jiang Gang (蒋刚)a, Hu Feng (胡峰)c, Wang Chuan-Ke (王传珂)b, Wang Zhe-Bin (王哲斌)b, Yang Jia-Min (杨家敏)b
a Institute of Atomic and Molecular Physics, Sichuan University, Chengdu 610065, China;
b Research Center of Laser Fusion, China Academy of Engineering Physics, Mianyang 621900, China;
c School of Mathematic and Physical Science, Xuzhou Institution of Technoogy, Xuzhou 221400, China
Abstract  Energy levels, wavelengths, transition rates, oscillator strengths, and lifetimes between the 2s22p2 3P1, 2s22p2 3P2, and 2s2p3 5S2 levels of ions in the carbon-like (C-like) isoelectronic sequence (nuclear charges Z=7-92) are calculated in the valence and core-valence limits using the multiconfiguration Dirac-Fock method. The Breit interaction, quantum electrodynamics (QED), and finite nuclear mass effects are taken into account in subsequent relativistic configuration-interaction calculations. The calculated energies and transition rates are compared with the critically evaluated experimental values and other recent calculated results. Our calculated data are in good agreement with these data.
Keywords:  carbon-like isoelectronics sequence      intercombination transition      multiconfiguration Dirac-Fock method      highly-charged ions  
Received:  25 November 2012      Revised:  18 December 2012      Accepted manuscript online: 
PACS:  32.70.Cs (Oscillator strengths, lifetimes, transition moments)  
  34.80.Dp (Atomic excitation and ionization)  
  95.30.Ky (Atomic and molecular data, spectra, and spectralparameters (opacities, rotation constants, line identification, oscillator strengths, gf values, transition probabilities, etc.))  
Fund: Project supported by the National Natural Science Foundation of China (Grant No. 11174213).
Corresponding Authors:  Jiang Gang     E-mail:  gjiang@scu.edu.cn

Cite this article: 

Liu Hao (刘浩), Jiang Gang (蒋刚), Hu Feng (胡峰), Wang Chuan-Ke (王传珂), Wang Zhe-Bin (王哲斌), Yang Jia-Min (杨家敏) Intercombination transitions of the carbon-like isoelectronic sequence 2013 Chin. Phys. B 22 073202

[1] Ellis D G, Martinson I and Träbert E 1990 Comm. At. Mol. Phys. 22 241
[2] Abdallah J, Faenov A Y, Hammer D, Pikuz S A, Csanak G and Clark R E H 1996 Phys. Scr. 53 705
[3] Bhatia A K and Doschek G A 1993 At. Data Nucl. Data Tables 55 315
[4] Träbert E, Wolf A, Pinnington E H, Linkemann J, Knystautas E J, Curtis A, Bhattacharya N and Berry H G 1998 Phys. Rev. A 58 4449
[5] Träbert E, Calamai A G, Gillaspy J D, Gwinner G, Tordoir X and Wolf A 2000 Phys. Rev. A 62 022507
[6] Feldman U and Seely J F 1985 At. Data Nucl. Data Tables 32 305
[7] Bhatia A K and Doschek G A 1993 At. Data Nucl. Data Tables 55 315
[8] Bhatia A K and Doschek G A 1993 At. Data Nucl. Data Tables 53 195
[9] Fawcett B C 1987 At. Data Nucl. Data Tables 37 367
[10] Zou Y and Li J M 1990 Chin. Phys. Lett. 7 216
[11] Zhao Z X and Li J M 1985 Acta Phys. Sin. 34 1469 (in Chinese)
[12] Zhang H L and Sampson D H 1996 At. Data Nucl. Data Tables 63 275
[13] Zhang H L and Sampson D H 1997 At. Data Nucl. Data Tables 65 183
[14] Aggarwal K M, Hibbert A and Keenan F P 1997 Astrophys. J. Suppl. Ser. 108 393
[15] Aggarwal K M 1998 Astrophys. J. Suppl. Ser. 118 589
[16] Aggarwal K M, Keenan F P and Msezane A Z 2001 Astrophys. J. Suppl. Ser. 136 763
[17] Griffin D C and Badnell N R 2000 J. Phys. B: At. Mol. Opt. Phys. 33 4389
[18] Badnell N R and Griffin D C 2001 J. Phys. B: At. Mol. Opt. Phys. 34 681
[19] Yuan P, Liu X S, Xie L Y, Zhang Y J and Dong C Z 2003 Chin. Phys. 12 271
[20] Fischer C F and Tachiev G 2004 At. Data Nucl. Data Tables 87 1
[21] Safronova U I, Ralchenko Y, Murakami I, Kato T and Kato D 2006 Phys. Scr. 73 143
[22] Shen X Z, Yuan P, Zhang H M and Wang J 2007 Chin. Phys. 16 2935
[23] Shen X Z, Yuan P and Liu J 2010 Chin. Phys. B 19 053101
[24] Aggarwal K M, Keenan F P and Lawson K D 2010 At. Data Nucl. Data Tables 96 123
[25] Yang N X, Dong C Z, Jiang J and Xie L Y 2010 Chin. Phys. B 19 093101
[26] Jönsson P and Bieroń J 2010 J. Phys. B: At. Mol. Opt. Phys. 43 074023
[27] Jönsson P, Rynkun P and Gaigalas G 2011 At. Data Nucl. Data Tables 97 648
[28] Zhang D H, Shi Y L, Jiang J, Dong C Z and Koike F 2012 Chin. Phys. B 21 013402
[29] Ates S Celik G, Tekeli G and Taser M 2012 At. Data Nucl. Data Tables 98 1
[30] Hu F, Yang J M, Wang C K, Zhang J Y, Jiang G and Zhu Z H 2011 Acta Phys. Sin. 60 103104 (in Chinese)
[31] Hao L H, G Jiang, Song S Q, and Hu F 2008 At. Data Nucl. Data Tables 94 739
[32] Hu F, Yang J M, Wang C K, Jing L F, Chen S B, Jiang G, Liu H, and Hao L H 2011 Phys. Rev. A 84 042506
[33] Song S Q and Peng F 2006 J. Phys. B: At. Mol. Opt. Phys. 39 2087
[34] Kim Y K, Baik D H, and Indelicato P 1991 Phys. Rev. A 44 148
[35] Mohr P J 1975 Phys. Rev. Lett. 34 1050
[36] Mohr P J 1982 Phys. Rev. A 26 2338
[37] Johnson W R and Soff G 1985 At. Data. Nucl. Data Tables 33 405
[38] Fullerton L W and Rinker Jr G A 1976 Phys. Rev. A 13 1283
[39] Kramida A, Ralchenko Y, Reader J and NIST ASD Team 2012 http://physics.nist.gov/asd
[1] Precision frequency measurement of 1S0-3P1 intercombination lines of Sr isotopes
Liu Hui (刘辉), Gao Feng (高峰), Wang Ye-Bing (王叶兵), Tian Xiao (田晓), Ren Jie (任洁), Lu Ben-Quan (卢本全), Xu Qin-Fang (徐琴芳), Xie Yu-Lin (谢玉林), Chang Hong (常宏). Chin. Phys. B, 2015, 24(1): 013201.
[2] Influence of relaxation effects on probabilities of the 2s2p5S2-2s22p2 3P1,2 intercombination transitions in NII
Yuan Ping (袁萍), Liu Xin-Sheng (刘欣生), Xie Lu-You (颉录有), Zhang Yi-Jun (张义军), Dong Chen-Zhong (董晨钟). Chin. Phys. B, 2003, 12(3): 271-274.
No Suggested Reading articles found!