Please wait a minute...
Chin. Phys. B, 2014, Vol. 23(1): 014701    DOI: 10.1088/1674-1056/23/1/014701
ELECTROMAGNETISM, OPTICS, ACOUSTICS, HEAT TRANSFER, CLASSICAL MECHANICS, AND FLUID DYNAMICS Prev   Next  

Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence

Imtiaz Ahmada b, Lu Zhi-Ming (卢志明)a, Liu Yu-Lu (刘宇陆)a
a Shanghai Key Laboratory of Mechanics in Energy Engineering, Shanghai Institute of Applied Mathematics and Mechanics, Shanghai University, Shanghai 200072, China;
b Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad 13100, Pakistan
Abstract  Streamwise evolution of longitudinal and transverse velocity structure functions in a decaying homogeneous and nearly isotropic turbulence is reported for Reynolds numbers Reλ up to 720. First, two theoretical relations between longitudinal and transverse structure functions are examined in the light of recently derived relations and the results show that the low-order transverse structure functions can be well approximated by longitudinal ones within the sub-inertial range. Reconstruction of fourth-order transverse structure functions with a recently proposed relation by Grauer et al. is comparatively less valid than the relation already proposed by Antonia et al. Secondly, extended self-similarity methods are used to measure the scaling exponents up to order eight and the streamwise evolution of scaling exponents is explored. The scaling exponents of longitudinal structure functions are, at first location, close to Zybin’s model, and at the fourth location, close to She–Leveque model. No obvious trend is found for the streamwise evolution of longitudinal scaling exponents, whereas, on the contrary, transverse scaling exponents become slightly smaller with the development of a steamwise direction. Finally, the stremwise variation of the order-dependent isotropy ratio indicates the turbulence at the last location is closer to isotropic than the other three locations.
Keywords:  fully developed turbulence      longitudinal and transverse structure functions      scaling exponents      intermittency  
Received:  19 March 2013      Revised:  23 June 2013      Accepted manuscript online: 
PACS:  47.10.ad (Navier-Stokes equations)  
  47.27.Jv (High-Reynolds-number turbulence)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 11272196, 11002085, and 11032007) and the Key Project of Education Commission of Shanghai Municipal, China (Grant No. 11ZZ87).
Corresponding Authors:  Lu Zhi-Ming     E-mail:  zmlu@shu.edu.cn

Cite this article: 

Imtiaz Ahmad, Lu Zhi-Ming (卢志明), Liu Yu-Lu (刘宇陆) Longitudinal and transverse structure functions in decaying nearly homogeneous and isotropic turbulence 2014 Chin. Phys. B 23 014701

[1] Frisch U 1995 Turbulence: The Legacy of A. N. Kolmogorov (London: Cambridge University Press)
[2] Monin A S and Yaglom A M 1975 Statistical Fluid Mechanics: Mechanics of Turbulence Vol. 2 (London: Cambridge University Press)
[3] Kolmogorov A N 1962 J. Fluid Mech. 13 82
[4] Moffatt H 2012 J. Turbul. 13 1
[5] Biferale L and Procaccia I 2005 Phys. Rep. 414 43
[6] Shen X and Warhaft Z 2002 Phys. Fluids 14 370
[7] Noullez A, Wallace G, Lempert W, Miles R B and Frisch U 1997 J. Fluid Mech. 339 287
[8] Camussi R, Barbagallo D, Guj G and Stella F 1996 Phys. Fluids 8 1181
[9] Boratav O and Pelz R 1997 Phys. Fluids 9 1400
[10] van de Water W and Herweijer J 1999 J. Fluid Mech. 387 3
[11] Romano G and Antonia R 2001 J. Fluid Mech. 436 231
[12] Gotoh T, Fukayama D and Nakano T 2002 Phys. Fluids 14 1065
[13] Ishihara T, Gotoh T and Kaneda Y 2009 Annu. Rev. Fluid Mech. 41 165
[14] Benzi R, Biferale L, Fisher R, Lamb D and Toschi F 2010 J. Fluid Mech. 653 221
[15] He G, Doolen G and Chen S 1999 Phys. Fluids 11 3743
[16] Hill R 2001 J. Fluid Mech. 434 379
[17] Zhou T and Antonia R 2000 J. Fluid Mech. 406 81
[18] Grossmann S, Lohse D and Reeh A 1997 Phys. Fluids 9 3817
[19] Dhruva B, Tsuji Y and Sreenivasan K 1997 Phys. Rev. E 56 4928
[20] Camussi R and Benzi R 1997 Phys. Fluids 9 257
[21] Bi W and Wei Q 2003 J. Turbul. 4 N28
[22] Yakhot V 2001 Phys. Rev. E 63 026307
[23] Kurien S and Sreenivasan K 2001 Phys. Rev. E 64 056302
[24] Grauer R, Homann H and Pinton J 2012 New J. Phys. 14 063016
[25] Kang H, Chester S and Meneveau C 2003 J. Fluid Mech. 480 129
[26] Saddoughi S and Veeravalli S 1994 J. Fluid Mech. 268 333
[27] Sreenivasan K 1996 Phys. Fluids 8 189
[28] Zhou T, Pearson B and Antonia R 2001 Fluid Dyn. Res. 28 127
[29] de Karman T and Howarth L 1938 Proc. Roy. Soc. London A 164 192
[30] Gotoh T and Nakano T 2003 J. Stat. Phys. 113 855
[31] Zybin K, Sirota V and Ilyin A 2010 Phys. Rev. E 82 056324
[32] Antonia R, Ould-Rouis M, Zhu Y and Anselmet F 1997 EuroPhys. Lett. 37 85
[33] She Z and Leveque L 1994 Phys. Rev. Lett. 72 336
[34] Benzi R, Ciliberto S, Tripiccione R, Baudet C, Massaioli F and Succi S 1993 Phys. Rev. E 48 29
[35] Benzi R, Ciliberto S, Baudet C and Chavarria G 1995 Physica D 80 385
[1] Intermittency of the density fluctuations and its influence on the radial transport in the boundary of J-TEXT
Zhu Meng-Zhou(朱孟周), Zhuang Ge(庄革), Wang Zhi-Jiang(王之江), and Pan Yuan(潘垣). Chin. Phys. B, 2011, 20(2): 025204.
[2] Intermittency and bifurcation in SEPICs under voltage-mode control
Liu Fang(刘芳). Chin. Phys. B, 2010, 19(8): 080511.
[3] Circuit implementation and multiform intermittency in a hyper-chaotic model extended from the Lorenz system
Cang Shi-Jian(仓诗建), Chen Zeng-Qiang(陈增强), and Wu Wen-Juan(吴文娟). Chin. Phys. B, 2009, 18(5): 1792-1800.
[4] Influence of velocity spatiotemporal correlations on the anomalous scaling exponents of passive scalars
Zhang Xiao-Qiang(张晓强), Wang Guang-Rui(王光瑞), and Chen Shi-Gang(陈式刚). Chin. Phys. B, 2009, 18(12): 5117-5122.
[5] Generation of on--off intermittency based on Rössler chaotic system
Zhou Qian(周茜), Chen Zeng-Qiang(陈增强), and Yuan Zhu-Zhi(袁著祉). Chin. Phys. B, 2007, 16(9): 2616-2626.
[6] Evidence of intermittent fluctuation of target fragments in 84Kr--AgBr interactions at 1.7 A GeV
Zhang Dong-Hai(张东海), Li Xue-Qin(李雪琴), Jia Hui-Ming(贾会明), He Chun-Le(何春乐), Liu Fang(刘芳), Zhao Hui-Hua(赵惠华), Li Zhen-Yu(李振宇), and Li Jun-Sheng(李俊生). Chin. Phys. B, 2007, 16(9): 2683-2688.
[7] Intermittency in 3.7 A GeV 16O-emulsion interactions
Zhang Dong-Hai(张东海), Zhao Hui-Hua(赵惠华), Liu Fang(刘芳), He Chun-Le(何春乐), Jia Hui-Ming(贾会明), Li Xue-Qin(李雪琴), Li Zhen-Yu(李振宇), and Li Jun-Sheng(李俊生). Chin. Phys. B, 2007, 16(9): 2689-2700.
[8] Observation of intermittency in edge plasma of SUNIST tokamak
Wang Wen-Hao (王文浩), He Ye-Xi (何也熙), Gao Zhe (高喆), Zeng Li (曾立), Zhang Guo-Ping (张国平), Xie Li-Feng (解丽凤), Feng Chun-Hua (冯春华). Chin. Phys. B, 2004, 13(12): 2091-2096.
No Suggested Reading articles found!