Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(6): 060508    DOI: 10.1088/1674-1056/22/6/060508
GENERAL Prev   Next  

Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method

Gamal M. Mahmouda, Emad E. Mahmoudb c, Ayman A. Arafab
a Department of Mathematics, Faculty of Science, Taibah University, Al-Madeenah Al-Munawwarah, P. O. Box 344, Kingdom of Saudi Arabia;
b Department of Mathematics, Faculty of Science, Sohag University, Sohag 82524, Egypt;
c College of Applied Medical Sciences, Turabah, Taif University, Kingdom of Saudi Arabia
Abstract  The aim of this paper is to study the control of hyperchaotic complex nonlinear systems with unknown parameters using passive control theory. An approach is stated to design the passive controller and estimate the unknown parameters based on the property of the passive system. The feasibility and effectiveness of the proposed approach is demonstrated through its application to the hyperchaotic complex Lü system, as an example. The estimated values of the unknown parameters are calculated. The analytical form of the complex controller is derived and used in the numerical simulation to control the hyperchaotic attractors of this example. Block diagrams of this example using Matlab/Simulink are constructed after and before the control to ensure the validity of the analytical results. Other examples of hyperchaotic complex nonlinear systems can be similarly treated.
Keywords:  control      passive control      hyperchaotic      complex  
Received:  07 October 2012      Revised:  16 December 2012      Accepted manuscript online: 
PACS:  05.45.-a (Nonlinear dynamics and chaos)  
  05.45.Gg (Control of chaos, applications of chaos)  
  05.45.Pg  
  05.45.Xt (Synchronization; coupled oscillators)  
Corresponding Authors:  Gamal M. Mahmoud, Emad E. Mahmoud     E-mail:  gmahmoud@, aun.edu.eg, gmahmoud_56@yahoo.com; emad_eluan@yahoo.com

Cite this article: 

Gamal M. Mahmoud, Emad E. Mahmoud, Ayman A. Arafa Controlling hyperchaotic complex systems with unknown parameters based on adaptive passive method 2013 Chin. Phys. B 22 060508

[1] Vidyasagar M 1979 IEEE Trans. Autom. Control 24 575
[2] Willems J C 1972 Arch. Ration. Mech. Anal. 45 321
[3] Lou X Y and Cui B T 2007 Neurocomputing 70 1071
[4] Mahmoud G M, Mahmoud E E and Arafa A A 2012 J. Vib. Control
[5] Xie L, Fu M and Li H 1998 IEEE Trans. Signal Process. 46 2394
[6] Pogromsky A Y 1998 Int. J. Bifur. Chaos 8 295
[7] Wang F Q and Liu C X 2007 Int. J. Mod. Phys. B 21 3053
[8] Calcev G 1998 Autom. 33 339
[9] Wen Y 1999 IEEE Trans. Circuits Syst. I 46 876
[10] Byrnes C I, Isidori A and Willems J C 1991 IEEE Trans. Auto. Control 36 1228
[11] Wang X J, Li J S and Chen G R 2008 Nonlinear Dyn. 53 45
[12] Wei D Q and Luo X 2008 Chin. Phys. B 17 92
[13] Kemih K 2009 Chaos, Solitons and Fractals 41 1897
[14] Chen X and Liu C 2010 Nonlinear Analysis: Real World Applications 11 683
[15] Sangpet T and Kuntanapreeda S 2010 Int. J. Bifur. Chaos 20 1519
[16] Wang F and Liu C 2007 Physica D 225 55
[17] Mahmoud E E 2012 J. Frank. Inst. 349 1247
[18] Wei D Q, Zhang B and Luo X S 2012 Chin. Phys. B 21 030504
[19] Fu S H, Lu Q S and Du Y 2012 Chin. Phys. B 21 060507
[20] Zhu D R, Liu C X and Yan B N 2012 Chin. Phys. B 21 090509
[21] Sangpet T and Kuntanapreeda S 2010 J. Sound Vib. 329 2490
[22] Wei D Q, Luo X S, Zhang B and Qin Y H 2010 Nonlinear Analysis: Real World Applications 11 1752
[23] Seron M M, Hill D J and Fradkov A L 1995 Autom. 31 1053
[24] Yuan F G and Shen L Z 2010 Chin. Phys. B 19 060505
[25] Jiang Z P, Hill D J and Fradkov A L 1996 Syst. Control Lett. 28 73
[26] Wei W, Li D H and Wang J 2011 Chin. Phys. B 20 040510
[27] Dai H, Jia L X, Hui M and Si G Q 2011 Chin. Phys. B 20 040507
[28] Zhang R X and Yang S P 2011 Chin. Phys. B 20 090512
[29] Li C L, Yu S M and Luo X S 2012 Chin. Phys. B 21 100506
[30] Niu Y J, Wang X Y and Pei B N 2012 Chin. Phys. B 21 030503
[31] Mahmoud E E and Mahmoud G M 2010 On Some Chaotic Complex Nonlinear Systmes (Berlin: Lambert Academic Publishing)
[32] Mahmoud E E and Mahmoud G M 2011 Chaotic and Hyperchaotic Nonlinear Systems (Berlin: Lambert Academic Publishing)
[33] Mahmoud G M, Bountis T and Mahmoud E E 2007 Int. J. Bifur. Chaos 17 4295
[34] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 61 141
[35] Mahmoud G M and Mahmoud E E 2010 Math. Comp. Simul. 80 2286
[36] Mahmoud G M, Ahmed M E and Mahmoud E E 2008 Int. J. Mod. Phys. C 19 1477
[37] Mahmoud G M, Mahmoud E E and Ahmed M E 2009 Nonlinear Dyn. 58 725
[38] Mahmoud G M, Mahmoud E E and Ahmed M E 2007 Int. J. Appl. Math. Stat. 12 90
[39] Mahmoud G M and Mahmoud E E 2012 Nonlinear Dyn. 67 1613
[40] Mahmoud G M, Bountis T, AbdEl-Latif G M and Mahmoud E E 2009 Nonlinear Dyn. 55 43
[41] Mahmoud G M and Mahmoud E E 2010 Nonlinear Dyn. 62 875
[42] Mahmoud G M and Mahmoud E E 2011 Int. J. Bifur. Chaos 21 2369
[43] Mahmoud E E 2012 Math. Comp. Modelling 55 1951
[44] Ning C Z and Haken H 1990 Phys. Rev. A 41 3827
[45] Fowler A C, Gibbon J D and Mc Guinnes M T 1983 Physica D 7 126
[46] Liu P and Liu S 2010 Nonlinear Analysis: Real World Applications 12 3046
[47] Gibbon J D and Mc Guinnes M J 1982 Physica D 5 108
[48] Nayfeh A H and Balachandran B 1995 Applied Nonlinear Dynamics: Analytical, Computational, and Experimental Methods (New York: Wiley)
[49] Isidori A 1989 Nonlinear Control Systems (Berlin: Springer-Verlag)
[50] Byrnes C I and Isidori A 1988 Syst. Control Lett. 11 9
[51] Beucher O and Weeks M 2006 Introduction to Matlab and Simulink (München: Pearson Education Deutschland GmbH)
[1] Riemann--Hilbert approach of the complex Sharma—Tasso—Olver equation and its N-soliton solutions
Sha Li(李莎), Tiecheng Xia(夏铁成), and Hanyu Wei(魏含玉). Chin. Phys. B, 2023, 32(4): 040203.
[2] Feedback control and quantum error correction assisted quantum multi-parameter estimation
Hai-Yuan Hong(洪海源), Xiu-Juan Lu(鲁秀娟), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(4): 040603.
[3] A 4H-SiC trench IGBT with controllable hole-extracting path for low loss
Lijuan Wu(吴丽娟), Heng Liu(刘恒), Xuanting Song(宋宣廷), Xing Chen(陈星), Jinsheng Zeng(曾金胜), Tao Qiu(邱滔), and Banghui Zhang(张帮会). Chin. Phys. B, 2023, 32(4): 048503.
[4] Guide and control of thermal conduction with isotropic thermodynamic parameters based on a rotary-concentrating device
Mao Liu(刘帽)†, Quan Yan(严泉). Chin. Phys. B, 2023, 32(4): 044402.
[5] Super-resolution reconstruction algorithm for terahertz imaging below diffraction limit
Ying Wang(王莹), Feng Qi(祁峰), Zi-Xu Zhang(张子旭), and Jin-Kuan Wang(汪晋宽). Chin. Phys. B, 2023, 32(3): 038702.
[6] An incommensurate fractional discrete macroeconomic system: Bifurcation, chaos, and complexity
Abderrahmane Abbes, Adel Ouannas, and Nabil Shawagfeh. Chin. Phys. B, 2023, 32(3): 030203.
[7] A color image encryption algorithm based on hyperchaotic map and DNA mutation
Xinyu Gao(高昕瑜), Bo Sun(孙博), Yinghong Cao(曹颖鸿), Santo Banerjee, and Jun Mou(牟俊). Chin. Phys. B, 2023, 32(3): 030501.
[8] Reconfigurable source illusion device for airborne sound using an enclosed adjustable piezoelectric metasurface
Yi-Fan Tang(唐一璠) and Shu-Yu Lin(林书玉). Chin. Phys. B, 2023, 32(3): 034306.
[9] Suppression and compensation effect of oxygen on the behavior of heavily boron-doped diamond films
Li-Cai Hao(郝礼才), Zi-Ang Chen(陈子昂), Dong-Yang Liu(刘东阳), Wei-Kang Zhao(赵伟康),Ming Zhang(张鸣), Kun Tang(汤琨), Shun-Ming Zhu(朱顺明), Jian-Dong Ye(叶建东),Rong Zhang(张荣), You-Dou Zheng(郑有炓), and Shu-Lin Gu(顾书林). Chin. Phys. B, 2023, 32(3): 038101.
[10] Analysis of cut vertex in the control of complex networks
Jie Zhou(周洁), Cheng Yuan(袁诚), Zu-Yu Qian(钱祖燏), Bing-Hong Wang(汪秉宏), and Sen Nie(聂森). Chin. Phys. B, 2023, 32(2): 028902.
[11] Charge-mediated voltage modulation of magnetism in Hf0.5Zr0.5O2/Co multiferroic heterojunction
Jia Chen(陈佳), Peiyue Yu(于沛玥), Lei Zhao(赵磊), Yanru Li(李彦如), Meiyin Yang(杨美音), Jing Xu(许静), Jianfeng Gao(高建峰), Weibing Liu(刘卫兵), Junfeng Li(李俊峰), Wenwu Wang(王文武), Jin Kang(康劲), Weihai Bu(卜伟海), Kai Zheng(郑凯), Bingjun Yang(杨秉君), Lei Yue(岳磊), Chao Zuo(左超), Yan Cui(崔岩), and Jun Luo(罗军). Chin. Phys. B, 2023, 32(2): 027504.
[12] Influence of the lattice parameter of the AlN buffer layer on the stress state of GaN film grown on (111) Si
Zhen-Zhuo Zhang(张臻琢), Jing Yang(杨静), De-Gang Zhao(赵德刚), Feng Liang(梁锋), Ping Chen(陈平), and Zong-Shun Liu(刘宗顺). Chin. Phys. B, 2023, 32(2): 028101.
[13] Enhancement of holding voltage by a modified low-voltage trigger silicon-controlled rectifier structure for electrostatic discharge protection
Yuankang Chen(陈远康), Yuanliang Zhou(周远良), Jie Jiang(蒋杰), Tingke Rao(饶庭柯), Wugang Liao(廖武刚), and Junjie Liu(刘俊杰). Chin. Phys. B, 2023, 32(2): 028502.
[14] Comparison of differential evolution, particle swarm optimization, quantum-behaved particle swarm optimization, and quantum evolutionary algorithm for preparation of quantum states
Xin Cheng(程鑫), Xiu-Juan Lu(鲁秀娟), Ya-Nan Liu(刘亚楠), and Sen Kuang(匡森). Chin. Phys. B, 2023, 32(2): 020202.
[15] Data encryption based on a 9D complex chaotic system with quaternion for smart grid
Fangfang Zhang(张芳芳), Zhe Huang(黄哲), Lei Kou(寇磊), Yang Li(李扬), Maoyong Cao(曹茂永), and Fengying Ma(马凤英). Chin. Phys. B, 2023, 32(1): 010502.
No Suggested Reading articles found!