Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(4): 040204    DOI: 10.1088/1674-1056/22/4/040204
GENERAL Prev   Next  

Global dynamics of a novel multi-group model for computer worms

Gong Yong-Wang (巩永旺)a b, Song Yu-Rong (宋玉蓉)a, Jiang Guo-Ping (蒋国平)a
a College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China;
b School of Information Engineering, Yancheng Institute of Technology, Yancheng 224051, China
Abstract  In this paper, we study worm dynamics in computer networks composed of many autonomous systems. A novel multi-group SIQR (susceptible-infected-quarantined-removed) model is proposed for computer worms by explicitly considering anti-virus measures and the network infrastructure. Then, the basic reproduction number of worm R0 is derived and the global dynamics of the model is established. It is shown that if R0 is less than or equal to 1, the disease-free equilibrium is globally asymptotically stable and the worm dies out eventually, whereas, if R0 is greater than 1, there exists one unique endemic equilibrium and it is globally asymptotically stable, thus the worm persists in the network. Finally, numerical simulations are given to illustrate the theoretical results.
Keywords:  computer worm      multi-group model      Lyapunov function      global dynamics  
Received:  04 September 2012      Revised:  16 October 2012      Accepted manuscript online: 
PACS:  02.40.Vh (Global analysis and analysis on manifolds)  
  89.20.Ff (Computer science and technology)  
  02.60.Lj (Ordinary and partial differential equations; boundary value problems)  
Fund: Project supported by the Natural Science Foundation of Jiangsu Province, China (Grant No. BK2010526), the Six Projects Sponsoring Talent Summits of Jiangsu Province, China (Grant No. SJ209006), the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20103223110003), the Ministry of Education Research in the Humanities and Social Sciences Planning Fund of China (Grant No. 12YJAZH120), and the Graduate Student Innovation Research Project of Jiangsu Province, China (Grant Nos. CXLX11_-0417 and CXLX11_-0404).
Corresponding Authors:  Gong Yong-Wang     E-mail:  gong_yw@126.com

Cite this article: 

Gong Yong-Wang (巩永旺), Song Yu-Rong (宋玉蓉), Jiang Guo-Ping (蒋国平) Global dynamics of a novel multi-group model for computer worms 2013 Chin. Phys. B 22 040204

[1] Toutonji O A, Yoo S M and Park M 2012 Appl. Math. Model. 36 2751
[2] Moore D, Shannon C and Brown J 2002 Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurement, Novermber 6-8, 2002, Marseille, France, p. 273
[3] Moore D, Paxson V, Savage S, Staniford S and Weaver N 2003 IEEE Secur. Priv. 1 33
[4] Kim J, Radhakrishnan S and Dhall S K 2004 Proceedings of the 13th International Conference on Computer Communications and Networks, October 11-13, 2004, Chicago, USA, p. 495
[5] Li J and Knickerbocker P 2007 Comput. Secur. 26 338
[6] Mishra B K and Saini D 2007 Appl. Math. Comput. 187 929
[7] Li Y, Liu Y, Shan X M, Ren Y, Jiao J and Qiu B 2005 Chin. Phys. 14 2153
[8] Mishra B K and Jha N 2007 Appl. Math. Comput. 190 1207
[9] Ren J, Yang X, Zhu Q, Yang L X and Zhang C 2012 Nonlinear Anal-Real. 13 376
[10] Zou C C, Gong W and Towsley D 2003 Proceedings of the 2003 ACM Workshop on Rapid Malcode, October 27, 2003, Washington DC, USA, p. 51
[11] Wang F, Zhang Y, Wang C, Ma J and Moon S 2010 Comput. Secur. 29 410
[12] Liljenstam M, Yuan Y, Premore B and Nicol D 2002 Proceedings of 10th IEEE/ACM Symposium on Modeling, Analysis and Simulation of Computer and Telecommunication Systems (MASCOTS), October 11-16, 2002, Fort Worth, USA, p. 109
[13] Huang W, Cooke K L and Castillo-Chavez C 1992 SIAM J. Appl. Math. 52 835
[14] Xiao D and Ruan S 2007 Math. Biosci. 208 419
[15] Ji C, Jiang D and Shi N 2011 Physica A 390 1747
[16] Lu J and Chen G 2005 IEEE Trans. Automat. Control 50 841
[17] Lu J, Yu X, Chen G and Cheng D 2004 IEEE Trans. Circ. Syst. I 51 787
[18] Zhou J, Lu J A and Lu J 2006 IEEE Trans. Automat. Control 51 652
[19] Lin P, Qin K and Wu H 2011 Chin. Phys. B 20 108701
[20] Zhang W and Liu J 2011 Chin. Phys. B 20 030701
[21] Wang H, Men F, He X and Wei Q 2012 Chin. Phys. B 21 060501
[22] Gong Y W, Song Y R and Jiang G P 2012 Acta Phys. Sin. 61 110205 (in Chinese)
[23] Wang P, Lu J and Ogorzalek M J 2012 Neurocomputing 78 155
[24] Guo H, Li M Y and Shuai Z 2006 Can. Appl. Math. Q. 14 259
[25] Guo H, Li M Y and Shuai Z 2008 Proc. Amer. Math. Soc. 136 2793
[26] Van den Driessche P and Watmough J 2002 Math. Biosci. 180 29
[27] Freedman H I, Tang M X and Ruan S G 1994 J. Dyn. Diff. Eq. 6 583
[28] Li M Y, Graef J R, Wang L and Karsai J 1999 Math. Biosci. 160 191
[29] Smith H L and Waltman P 1995 The Theory of the Chemostat: Dynamics of Microbial Competition (Cambridge: Cambridge University Press)
[1] Stability analysis of a simple rheonomic nonholonomic constrained system
Chang Liu(刘畅), Shi-Xing Liu(刘世兴), Feng-Xing Mei(梅凤翔). Chin. Phys. B, 2016, 25(12): 124501.
[2] Two kinds of generalized gradient representationsfor holonomic mechanical systems
Feng-Xiang Mei(梅凤翔) and Hui-Bin Wu(吴惠彬). Chin. Phys. B, 2016, 25(1): 014502.
[3] Skew-gradient representation of generalized Birkhoffian system
Mei Feng-Xiang (梅凤翔), Wu Hui-Bin (吴惠彬). Chin. Phys. B, 2015, 24(10): 104502.
[4] Stability analysis of Markovian jumping stochastic Cohen–Grossberg neural networks with discrete and distributed time varying delays
M. Syed Ali. Chin. Phys. B, 2014, 23(6): 060702.
[5] Lyapunov function as potential function:A dynamical equivalence
Yuan Ruo-Shi (袁若石), Ma Yi-An (马易安), Yuan Bo (苑波), Ao Ping (敖平). Chin. Phys. B, 2014, 23(1): 010505.
[6] Reliability of linear coupling synchronization of hyperchaotic systems with unknown parameters
Li Fan (李凡), Wang Chun-Ni (王春妮), Ma Jun (马军). Chin. Phys. B, 2013, 22(10): 100502.
[7] Synchronization of spatiotemporal chaos in complex networks via backstepping
Chai Yuan(柴元), LŰ Ling(吕翎), and Chen Li-Qun(陈立群) . Chin. Phys. B, 2012, 21(3): 030506.
[8] Stability analysis of nonlinear Roesser-type two-dimensional systems via homogenous polynomial technique
Zhang Tie-Yan (张铁岩), Zhao Yan (赵琰), Xie Xiang-Peng (解相朋). Chin. Phys. B, 2012, 21(12): 120503.
[9] Comments on “The feedback control of fractional order unified chaotic system”
Elham Amini Boroujeni and Hamid Reza Momeni . Chin. Phys. B, 2011, 20(9): 090508.
[10] Stability of piecewise-linear models of genetic regulatory networks
Lin Peng(林鹏), Qin Kai-Yu(秦开宇), and Wu Hai-Yan(吴海燕) . Chin. Phys. B, 2011, 20(10): 108701.
[11] Robust H control of piecewise-linear chaotic systems with random data loss
Zhang Hong-Bin(张洪斌), Yu Yong-Bin(于永斌), and Zhang Jian(张健). Chin. Phys. B, 2010, 19(8): 080509.
[12] Linear-control-based synchronisation of coexisting attractor networks with time delays
Song Yun-Zhong(宋运忠). Chin. Phys. B, 2010, 19(6): 060513.
[13] Distributed predictive control of spiral wave in cardiac excitable media
Gan Zheng-Ning(甘正宁) and Cheng Xin-Ming(成新明). Chin. Phys. B, 2010, 19(5): 050514.
[14] Synchronising chaotic Chua's circuit using switching feedback control based on piecewise quadratic Lyapunov functions
Zhang Hong-Bin(张洪斌), Xia Jian-Wei(夏建伟), Yu Yong-Bin(于永斌), and Dang Chuang-Yin(党创寅). Chin. Phys. B, 2010, 19(3): 030505.
[15] Hierarchical-control-based output synchronization of coexisting attractor networks
Song Yun-Zhong(宋运忠) and Tang Yi-Fa(唐贻发). Chin. Phys. B, 2010, 19(2): 020506.
No Suggested Reading articles found!