Please wait a minute...
Chin. Phys. B, 2013, Vol. 22(2): 023202    DOI: 10.1088/1674-1056/22/2/023202
ATOMIC AND MOLECULAR PHYSICS Prev   Next  

On the fluorescence enhancement mechanism of Er3+ in germanate glass containing silver particles

Li Xiang-Ping (李香萍)a b, Chen Bao-Jiu (陈宝玖)a, Shen Ren-Sheng (申人升)b, Zhang Jin-Su (张金苏)a, Sun Jia-Shi (孙佳石)a, Cheng Li-Hong (程丽红)a, Zhong Hai-Yang (仲海洋)a, Tian Yue (田跃)a, Fu Shao-Bo (付少博)a, Du Guo-Tong (杜国同 )b
a Department of Physics, Dalian Maritime University, Dalian 116026, China;
b School of Physics and Optoelectronic Engineering, Dalian University of Technology, Dalian 116024, China
Abstract  The spectral properties of trivalent erbium ions (Er3+) are systematically studied in a melt-quenched germanate glass (60~GeO2-20PbO-10BaO-10K2O-0.1Ag2O) containing silver (Ag) particles. Thermal treatment of the material leads to the precipitation of Ag particles as observed by transmission electron microscopy and confirmed by absorption spectrum for the obvious surface plasmon resonance peak of Ag particles. The fluorescence from Er3+ in the 10-min-annealed sample with Ag particles is found to be 4.2 times enhancement compared with the unannealed sample excited by 488-nm Ar+ laser. A comparison is made between a spectral study performed on the unannealed Er3+-doped sample and the one annealed for 20~min. The data of absorption cross section and Judd-Ofelt intensity parameters show the agreement between the two samples no matter whether there are Ag particles, indicating that the introduction of Ag particles by post-heat treatment has no effect on the crystal field environment of Er3+ ions. And the fluorescence enhancement is attributed to the surface plasmon oscillations of Ag particles in germanate glass.
Keywords:  Er3+      silver particles      fluorescence enhancement      surface plasmon resonance  
Received:  25 June 2012      Revised:  10 August 2012      Accepted manuscript online: 
PACS:  32.50.+d (Fluorescence, phosphorescence (including quenching))  
  71.20.Eh (Rare earth metals and alloys)  
  71.15.Qe (Excited states: methodology)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 61078061 and 11104023); the Natural Science Foundation of Liaoning Province, China (Grant No. 20111032); the State Key Development Program for Basic Research of China Grant No. 2012CB626801); and the Fundamental Research Funds for the Central Universities (Grant No. 2011QN152).
Corresponding Authors:  Chen Bao-Jiu     E-mail:  chenmbj@sohu.com

Cite this article: 

Li Xiang-Ping (李香萍), Chen Bao-Jiu (陈宝玖), Shen Ren-Sheng (申人升), Zhang Jin-Su (张金苏), Sun Jia-Shi (孙佳石), Cheng Li-Hong (程丽红), Zhong Hai-Yang (仲海洋), Tian Yue (田跃), Fu Shao-Bo (付少博), Du Guo-Tong (杜国同 ) On the fluorescence enhancement mechanism of Er3+ in germanate glass containing silver particles 2013 Chin. Phys. B 22 023202

[1] Zhang H Y, Yang L Q, Meng L, Nie J C, Ning T Y, Liu W M, Sun J Y and Wang P F 2012 Chin. Phys. B 21 020601
[2] Wu D J, Jiang S M and Liu X J 2012 Chin. Phys. B 21 077803
[3] Nie S M and Emory S R 1997 Science 275 1102
[4] Dintinger J, Klein S and Ebbesen T W 2006 Adv. Mater. (Weinheim, Ger.) 18 1267
[5] Zhou F, Liu Y and Li Z Y 201 Chin. Phys. B 20 037303
[6] Schaadt D M, Feng B and Yu E T 2005 Appl. Phys. Lett. 86 063106
[7] Okamoto K, Niki I, Shvartser A, Narukawa Y, Mukai T and Scherer A 2004 Nature Mater. 3 601
[8] Shi X Z, Shen C M, Wang D K, Li C, Tian Y, Xu Z C, Wang C M and Gao H J 2011 Chin. Phys. B 20 076103
[9] Okamoto K, Niki I, Scherer A, Narukawa Y, Mukai T and Kawakami Y 2005 Appl. Phys. Lett. 87 071102
[10] Qiu D J, Fan W Z, Weng S, Wu H Z and Wang J 2011 Acta Phys. Sin. 60 087301 (in Chinese)
[11] Xiao C W, Shen C M, Yang T Z, Gao H J and Xu Z C 2008 Chin. Phys. B 17 2066
[12] Wang X T, Shi W S, She G W, Mu L X and Lee S T 2010 Appl. Phys. Lett. 96 053104
[13] Pompa P P, Martiradonna L, Della Torre A, Della SaLa F, Manna L, De Vittorio M, Calabi F, Cingolani R and Rinaldi R 2006 Nature 444 126
[14] Joseph R L 2004 Anal. Biochem. 324 153
[15] Popov O, Lirtsman V and Davidov D 2009 Appl. Phys. Lett. 95 191108
[16] Tomokatsu H, Selvan S and Nogami M 1999 Appl. Phys. Lett. 74 1513
[17] Strohhofer C and Polman A 2002 Appl. Phys. Lett. 81 1414
[18] Wang C H, Chen C W, Chen Y T, Wei C M, Chen Y F, Lai C W, Ho M L, Chou P T and Hofmann M 2010 Appl. Phys. Lett. 96 071906
[19] Duan L, Lin B X, Zhang W, Zhong S and Fu Z X 2006 Appl. Phys. Lett. 88 232110
[20] Malta O L, Santa-Cruz P A, De Sá G F and Auzel F 1985 J. Lumin. 33 261
[21] Jimenez J, Lysenko S and Liu H 2008 J. Appl. Phys. 104 054313
[22] Mertens H and Polman A 2006 Appl. Phys. Lett. 89 211107
[23] Wu Y, Xu T F, Shen X, Dai S X, Nie Q H, Wang X S, Song B A, Zhang W and Lin C G 2011 6th IEEE Conference on Industrial Electronics and Applications (ICIEA), June 21-23, Beijing China, p. 1464
[24] Bomfim F A, Martinelli J R, Kassab L R P, Assumpcão T A A and de Araújo C B 2010 J. Non-Cryst. Solids 356 2598
[25] Rivera V A G, Osorio S P A, Ledemi Y, Manzani D, Messaddeq Y, Nunes L A O and Marega E 2010 Opt. Express 18 25321
[26] Liu C and Heo J 2010 J. Am. Ceram. Soc. 93 3349
[27] Eichelbaum M and Rademann K 2009 Adv. Func. Mater. 19 2045
[28] Doremus R H 1965 J. Chem. Phys. 42 414
[29] Hayakawa T, Selvan S T and Nogami M 1999 J. Non-Cryst. Solids 259 16
[30] Ofelt G S 1962 J. Chem. Phys. 37 511
[31] Judd B R 1962 Phys. Rev. 127 750
[1] Numerical simulation of a truncated cladding negative curvature fiber sensor based on the surface plasmon resonance effect
Zhichao Zhang(张志超), Jinhui Yuan(苑金辉), Shi Qiu(邱石), Guiyao Zhou(周桂耀), Xian Zhou(周娴), Binbin Yan(颜玢玢), Qiang Wu(吴强), Kuiru Wang(王葵如), and Xinzhu Sang(桑新柱). Chin. Phys. B, 2023, 32(3): 034208.
[2] Fiber cladding dual channel surface plasmon resonance sensor based on S-type fiber
Yong Wei(魏勇), Xiaoling Zhao(赵晓玲), Chunlan Liu(刘春兰), Rui Wang(王锐), Tianci Jiang(蒋天赐), Lingling Li(李玲玲), Chen Shi(石晨), Chunbiao Liu(刘纯彪), and Dong Zhu(竺栋). Chin. Phys. B, 2023, 32(3): 030702.
[3] Dual-channel fiber-optic surface plasmon resonance sensor with cascaded coaxial dual-waveguide D-type structure and microsphere structure
Ling-Ling Li(李玲玲), Yong Wei(魏勇), Chun-Lan Liu(刘春兰), Zhuo Ren(任卓), Ai Zhou(周爱), Zhi-Hai Liu(刘志海), and Yu Zhang(张羽). Chin. Phys. B, 2023, 32(2): 020702.
[4] Numerical study of a highly sensitive surface plasmon resonance sensor based on circular-lattice holey fiber
Jian-Fei Liao(廖健飞), Dao-Ming Lu(卢道明), Li-Jun Chen(陈丽军), and Tian-Ye Huang(黄田野). Chin. Phys. B, 2022, 31(6): 060701.
[5] Multi-frequency focusing of microjets generated by polygonal prisms
Yu-Jing Yang(杨育静), De-Long Zhang(张德龙), and Ping-Rang Hua(华平壤). Chin. Phys. B, 2022, 31(3): 034201.
[6] Sensitivity improvement of aluminum-based far-ultraviolet nearly guided-wave surface plasmon resonance sensor
Tianqi Li(李天琦), Shujing Chen(陈淑静), and Chengyou Lin(林承友). Chin. Phys. B, 2022, 31(12): 124208.
[7] Photonic spin Hall effect and terahertz gas sensor via InSb-supported long-range surface plasmon resonance
Jie Cheng(程杰), Gaojun Wang(王高俊), Peng Dong(董鹏), Dapeng Liu(刘大鹏), Fengfeng Chi(迟逢逢), and Shengli Liu(刘胜利). Chin. Phys. B, 2022, 31(1): 014205.
[8] A multi-band and polarization-independent perfect absorber based on Dirac semimetals circles and semi-ellipses array
Zhiyou Li(李治友), Yingting Yi(易颖婷), Danyang Xu(徐丹阳), Hua Yang(杨华), Zao Yi(易早), Xifang Chen(陈喜芳), Yougen Yi(易有根), Jianguo Zhang(张建国), and Pinghui Wu(吴平辉). Chin. Phys. B, 2021, 30(9): 098102.
[9] Surface plasmon polaritons frequency-blue shift in low confinement factor excitation region
Ling-Xi Hu(胡灵犀), Zhi-Qiang He(何志强), Min Hu(胡旻), and Sheng-Gang Liu(刘盛纲). Chin. Phys. B, 2021, 30(8): 084102.
[10] Optical absorption tunability and local electric field distribution of gold-dielectric-silver three-layered cylindrical nanotube
Ye-Wan Ma(马业万), Zhao-Wang Wu(吴兆旺), Yan-Yan Jiang(江燕燕), Juan Li(李娟), Xun-Chang Yin(尹训昌), Li-Hua Zhang(章礼华), and Ming-Fang Yi(易明芳). Chin. Phys. B, 2021, 30(11): 114207.
[11] Controlled plasmon-enhanced fluorescence by spherical microcavity
Jingyi Zhao(赵静怡), Weidong Zhang(张威东), Te Wen(温特), Lulu Ye(叶璐璐), Hai Lin(林海), Jinglin Tang(唐靖霖), Qihuang Gong(龚旗煌), and Guowei Lyu(吕国伟). Chin. Phys. B, 2021, 30(11): 114215.
[12] Cascaded dual-channel fiber SPR temperature sensor based on liquid and solid encapsulations
Yong Wei(魏勇), Lingling Li(李玲玲), Chunlan Liu(刘春兰), Jiangxi Hu(胡江西), Yudong Su(苏于东), Ping Wu(吴萍), and Xiaoling Zhao(赵晓玲). Chin. Phys. B, 2021, 30(10): 100701.
[13] Photocurrent improvement of an ultra-thin silicon solar cell using the localized surface plasmonic effect of clustering nanoparticles
F Sobhani, H Heidarzadeh, H Bahador. Chin. Phys. B, 2020, 29(6): 068401.
[14] Tunability of Fano resonance in cylindrical core-shell nanorods
Ben-Li Wang(王本立). Chin. Phys. B, 2020, 29(4): 045202.
[15] Processes underlying the laser photochromic effect in colloidal plasmonic nanoparticle aggregates
A E Ershov, V S Gerasimov, I L Isaev, A P Gavrilyuk, S V Karpov. Chin. Phys. B, 2020, 29(3): 037802.
No Suggested Reading articles found!