Please wait a minute...
Chin. Phys. B, 2012, Vol. 21(3): 030204    DOI: 10.1088/1674-1056/21/3/030204
GENERAL Prev   Next  

Novel stability and stabilization criteria for Takagi–Sugeno fuzzy time-delay systems

Gong Da-Wei(宫大为), Zhang Hua-Guang(张化光), and Wang Zhan-Shan(王占山)
College of Information Science and Engineering, Northeastern University, Shenyang 110819, China
Abstract  We study the problems of stability and stabilization for Takagi-Sugeno (T-S) fuzzy time-delay systems. First, by constructing a less-redundant Lyapunov-Krasovskii function and introducing a useful inequality, an innovative stability criterion is obtained, which gives a significant improvement on the performance. Compared with the exiting references, our result can use fewer unknown variables and get better results. Furthermore, based on the derived stability criteria, a new stabilization condition is developed, in which the controller gain and the maximum allowable delay bound can be obtained simultaneously. The conditions are all derived in the form of linear matrix inequality, which are easy to verify. Finally, numerical examples are given to show the effectiveness of the proposed methods.
Keywords:  stabilization      free-weighting matrix  
Received:  28 May 2011      Revised:  02 November 2011      Accepted manuscript online: 
PACS:  02.30.Yy (Control theory)  
  02.60.Cb (Numerical simulation; solution of equations)  
  87.16.A- (Theory, modeling, and simulations)  
Fund: Project supported by the National Natural Science Foundation of China (Grant Nos. 50977008, 61034005, and 61104021), the National High Technology Research and Development Program of China (Grant No. 2009AA04Z127), and the National Basic Research Program of China (Grant No. 2009CB320601).
Corresponding Authors:  Gong Da-Wei,pzhzhx@126.com     E-mail:  pzhzhx@126.com

Cite this article: 

Gong Da-Wei(宫大为), Zhang Hua-Guang(张化光), and Wang Zhan-Shan(王占山) Novel stability and stabilization criteria for Takagi–Sugeno fuzzy time-delay systems 2012 Chin. Phys. B 21 030204

[1] Takagi T and Sugeno M 1985 IEEE Tran. Syst. Man. Cybernt. 15 116
[2] Wang H, Tanaka K and Griffin M 1996 it IEEE Transations on Fuzzy Systems 4 14
[3] Tanaka K, Ikeda T and Wang H 1996 IEEE Transations on Fuzzy Systems 4 1
[4] Zhang H, Lun S and Liu D 2007 it IEEE Transations on Fuzzy Systems 15 453
[5] Kim E and Lee H 2000 IEEE Transations on Fuzzy Systems 8 523
[6] Liu X and Zhang Q 2003 Automatica 39 1571
[7] Lu J G 2005 Chin. Phys. B 14 703
[8] Fang C, Liu Y, Kau S, Lin H and Lee C 2006 IEEE Transations on Fuzzy Systems 14 386
[9] Zhang H, Xie X and Wang X 2010 Chin. Phys. B 19 060504
[10] Zamania I, Sadati N and Zarif M 2011 Fuzzy Sets and Systems 174 31
[11] Zhang H and Xie X 2011 IEEE Transations on Fuzzy Systems 19 478
[12] Ma D Z, Zhang H G, Wang Z S and Feng J 2010 Chin. Phys. B 19 050506
[13] Lendek Z, Babuvska R and Schutter B 2011 Fuzzy Sets and Systems 174 1
[14] Cao Y and Frank P M 2001 it Fuzzy Sets and Systems 124 213
[15] Guan X and Chen C 2004 IEEE Transations on Fuzzy Systems 12 236
[16] Yoneyama J 2007 Fuzzy Sets and Systems 158 2225
[17] Wu H and Li H 2007 IEEE Transations on Fuzzy Systems 15 482
[18] Liu F, Wu M, He Y and Yokoyama R 2010 Fuzzy Sets and Systems 161 2033
[19] Peng C, Yue D, Yang T C and Tian E G 2009 IEEE Transations on Fuzzy Systems 17 1143
[20] Hsiao F H 2010 Fuzzy Sets and Systems 161 2760
[21] Lien C H 2006 Chaos Soliton. Fract. 28 422
[22] Chen B and Liu X P 2005 IEEE Transations on Fuzzy Systems 13 544
[23] Guan X P and Chen C L 2004 IEEE Transations on Fuzzy Systems 12 236
[24] Wu H N and Li H X 2007 IEEE Transations on Fuzzy Systems 15 482
[25] Zhang X M, Wu M, She J H and He Y 2005 Automatica 41 1405
[26] Li C G, Wang H J and Liao X F 2004 IET Control Theory and Applications 151 417
[27] Tian E G and Peng C 2006 Fuzzy Sets and Systems 157 544
[28] Chen B, Liu X P and Tong S C 2007 Fuzzy Sets and Systems 158 2209
[29] Wu H N and Li H X 2007 Fuzzy Sets and Systems 15 482
[30] Lien C, Yu K, Chen W, Wan Z and Chung Y 2007 IET Control Theory and Applications 1 764
[1] Tailoring of thermal expansion and phase transition temperature of ZrW2O8 with phosphorus and enhancement of negative thermal expansion of ZrW1.5P0.5O7.75
Chenjun Zhang(张晨骏), Xiaoke He(何小可), Zhiyu Min(闵志宇), and Baozhong Li(李保忠). Chin. Phys. B, 2023, 32(4): 048201.
[2] Generation of stable and tunable optical frequency linked to a radio frequency by use of a high finesse cavity and its application in absorption spectroscopy
Yueting Zhou(周月婷), Gang Zhao(赵刚), Jianxin Liu(刘建鑫), Xiaojuan Yan(闫晓娟), Zhixin Li(李志新), Weiguang Ma(马维光), and Suotang Jia(贾锁堂). Chin. Phys. B, 2022, 31(6): 064206.
[3] Dynamics and intermittent stochastic stabilization of a rumor spreading model with guidance mechanism in heterogeneous network
Xiaojing Zhong(钟晓静), Yukun Yang(杨宇琨), Runqing Miao(苗润青), Yuqing Peng(彭雨晴), and Guiyun Liu(刘贵云). Chin. Phys. B, 2022, 31(4): 040205.
[4] Dynamic stabilization of atomic ionization in a high-frequency laser field with different initial angular momenta
Di-Yu Zhang(张頔玉), Yue Qiao(乔月), Wen-Di Lan(蓝文迪), Jun Wang(王俊), Fu-Ming Guo(郭福明), Yu-Jun Yang(杨玉军), and Da-Jun Ding(丁大军). Chin. Phys. B, 2022, 31(10): 103202.
[5] Spectral filtering of dual lasers with a high-finesse length-tunable cavity for rubidium atom Rydberg excitation
Yang-Yang Liu(刘杨洋), Zhuo Fu(付卓), Peng Xu(许鹏), Xiao-Dong He(何晓东), Jin Wang(王谨), and Ming-Sheng Zhan(詹明生). Chin. Phys. B, 2021, 30(7): 074203.
[6] Discontinuous event-trigger scheme for global stabilization of state-dependent switching neural networks with communication delay
Yingjie Fan(樊英杰), Zhen Wang(王震), Jianwei Xia(夏建伟), and Hao Shen(沈浩). Chin. Phys. B, 2021, 30(3): 030202.
[7] Stabilization strategy of a car-following model with multiple time delays of the drivers
Weilin Ren(任卫林), Rongjun Cheng(程荣军), and Hongxia Ge(葛红霞). Chin. Phys. B, 2021, 30(12): 120506.
[8] High-performance frequency stabilization of ultraviolet diode lasers by using dichroic atomic vapor spectroscopy and transfer cavity
Danna Shen(申丹娜), Liangyu Ding(丁亮宇), Qiuxin Zhang(张球新), Chenhao Zhu(朱晨昊), Yuxin Wang(王玉欣), Wei Zhang(张威), Xiang Zhang(张翔). Chin. Phys. B, 2020, 29(7): 074210.
[9] Stable continuous-wave single-frequency intracavity frequency-doubled laser with intensity noise suppressed in audio frequency region
Ying-Hao Gao(高英豪), Yuan-Ji Li(李渊骥), Jin-Xia Feng(冯晋霞), Kuan-Shou Zhang(张宽收). Chin. Phys. B, 2019, 28(9): 094204.
[10] Non-crossover sub-Doppler DAVLL in selective reflection scheme
Lin-Jie Zhang(张临杰), Hao Zhang(张好), Yan-Ting Zhao(赵延霆), Lian-Tuan Xiao(肖连团), Suo-Tang Jia(贾锁堂). Chin. Phys. B, 2019, 28(8): 084211.
[11] Flexible control of semiconductor laser with frequency tunable modulation transfer spectroscopy
Ning Ru(茹宁), Yu Wang(王宇), Hui-Juan Ma(马慧娟), Dong Hu(胡栋), Li Zhang(张力), Shang-Chun Fan(樊尚春). Chin. Phys. B, 2018, 27(7): 074201.
[12] Dynamic stabilization of Na atom in an intense pulsed laser field
Xiao-Li Guo(郭晓丽), Song-Feng Zhao(赵松峰), Guo-Li Wang(王国利), Xiao-Xin Zhou(周效信). Chin. Phys. B, 2018, 27(4): 043201.
[13] Modulation transfer spectroscopy based on acousto-optic modulator with zero frequency shift
Chen-Fei Wu(吴晨菲), Xue-Shu Yan(颜学术), Li-Xun Wei(卫立勋), Pei Ma(马沛), Jian-Hui Tu(涂建辉), Jian-Wei Zhang(张建伟), Li-Jun Wang(王力军). Chin. Phys. B, 2018, 27(11): 114203.
[14] Stabilizing effect of plasma discharge on bubbling fluidized granular bed
Hu Mao-Bin (胡茂彬), Dang Sai-Chao (党赛超), Ma Qiang (马强), Xia Wei-Dong (夏维东). Chin. Phys. B, 2015, 24(7): 074502.
[15] A long-term frequency-stabilized erbium-fiber-laser-based optical frequency comb with an intra-cavity electro-optic modulator
Zhang Yan-Yan (张颜艳), Yan Lu-Lu (闫露露), Zhao Wen-Yu (赵文宇), Meng Sen (孟森), Fan Song-Tao (樊松涛), Zhang Long (张龙), Guo Wen-Ge (郭文阁), Zhang Shou-Gang (张首刚), Jiang Hai-Feng (姜海峰). Chin. Phys. B, 2015, 24(6): 064209.
No Suggested Reading articles found!